To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
Let $f(z)=\sum _{n=0}^{\infty }a_n z^n \in H(\mathbb {D})$ be an analytic function over the unit disk in the complex plane, and let $\mathcal {R} f$ be its randomization:
where $(X_n)_{n\ge 0}$ is a standard sequence of independent Bernoulli, Steinhaus, or Gaussian random variables. In this note, we characterize those $f(z) \in H(\mathbb {D})$ such that the zero set of $\mathcal {R} f$ satisfies a Blaschke-type condition almost surely:
We verify a long-standing conjecture on the membership of univalent harmonic mappings in the Hardy space, whenever the functions have a “nice” analytic part. We also produce a coefficient estimate for these functions, which is in a sense best possible. The problem is then explored in a new direction, without the additional hypothesis. Interestingly, our ideas extend to certain classes of locally univalent harmonic mappings. Finally, we prove a Baernstein-type extremal result for the function $\log (h'+cg')$, when $f=h+\overline {g}$ is a close-to-convex harmonic function, and c is a constant. This leads to a sharp coefficient inequality for these functions.
Consider the multiplication operator MB in $L^2(\mathbb{T})$, where the symbol B is a finite Blaschke product. In this article, we characterize the commutant of MB in $L^2(\mathbb{T})$. As an application of this characterization result, we explicitly determine the class of conjugations commuting with $M_{z^2}$ or making $M_{z^2}$ complex symmetric by introducing a new class of conjugations in $L^2(\mathbb{T})$. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.
Let $H^\infty $ be the algebra of bounded holomorphic functions on the open unit disk, and let $\mathfrak M$ be its maximal ideal space. Let $\mathfrak M_a$ be the union of nontrivial Gleason parts (analytic disks) of $\mathfrak M$. In this paper, we study the problem of extensions of bounded Banach-valued holomorphic functions and holomorphic maps with values in Oka manifolds from Gleason parts of $\mathfrak M_a\setminus \mathbb {D}$. The resulting extensions satisfy the uniform boundedness principle in the sense that their norms are bounded by constants that do not depend on the choice of the Gleason part. The results extend fundamental results of D. Suárez on the characterization of the algebra of restrictions of Gelfand transforms of functions in $H^\infty $ to Gleason parts of $ \mathfrak M_a\setminus \mathbb {D}$. The proofs utilize our recent advances on $\bar \partial $-equations on quasi-interpolating sets and Runge-type approximations.
We study symmetric and antisymmetric tensor products of Hilbert-space operators, focusing on norms and spectra for some well-known classes favored by function-theoretic operator theorists. We pose many open questions that should interest the field.
We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|^m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy–Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.
The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from $\mathbb {R}^n$ to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of $\mathbb {R}^n$—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.
To every finite metric space X, including all connected unweighted graphs with the minimum edge-distance metric, we attach an invariant that we call its blowup-polynomial $p_X(\{ n_x : x \in X \})$. This is obtained from the blowup $X[\mathbf {n}]$ – which contains $n_x$ copies of each point x – by computing the determinant of the distance matrix of $X[\mathbf {n}]$ and removing an exponential factor. We prove that as a function of the sizes $n_x$, $p_X(\mathbf {n})$ is a polynomial, is multi-affine, and is real-stable. This naturally associates a hitherto unstudied delta-matroid to each metric space X; we produce another novel delta-matroid for each tree, which interestingly does not generalize to all graphs. We next specialize to the case of $X = G$ a connected unweighted graph – so $p_G$ is “partially symmetric” in $\{ n_v : v \in V(G) \}$ – and show three further results: (a) We show that the polynomial $p_G$ is indeed a graph invariant, in that $p_G$ and its symmetries recover the graph G and its isometries, respectively. (b) We show that the univariate specialization $u_G(x) := p_G(x,\dots ,x)$ is a transform of the characteristic polynomial of the distance matrix $D_G$; this connects the blowup-polynomial of G to the well-studied “distance spectrum” of G. (c) We obtain a novel characterization of complete multipartite graphs, as precisely those for which the “homogenization at $-1$” of $p_G(\mathbf { n})$ is real-stable (equivalently, Lorentzian, or strongly/completely log-concave), if and only if the normalization of $p_G(-\mathbf { n})$ is strongly Rayleigh.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\exp (h_1(z)+C_1 z)$, where $h_1$ is an entire function of period c and $\exp (C_1 c)\neq 1$, or $f(z)=\exp (h_2(z)+C_2 z)$, where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies
Let $H^{\infty}(\Omega,X)$ be the space of bounded analytic functions $f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$ from a proper simply connected domain Ω containing the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$ into a complex Banach space X with $\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$. Let $\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$ with $\phi_{0}(r)\leq 1$ such that $\sum_{n=0}^{\infty} \phi_{n}(r)$ converges locally uniformly with respect to $r \in [0,1)$. For $1\leq p,q \lt \infty$, we denote
In this article, we extensively study the Bohr radius $R_{p,q,\phi}(\Omega,X)$, when X is an arbitrary Banach space, and $X=\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.
Beardon and Minda gave a characterization of normal families of holomorphic and meromorphic functions in terms of a locally uniform Lipschitz condition. Here, we generalize this viewpoint to families of mappings in higher dimensions that are locally uniformly continuous with respect to a given modulus of continuity. Our main application is to the normality of families of quasiregular mappings through a locally uniform Hölder condition. This provides a unified framework in which to consider families of quasiregular mappings, both recovering known results of Miniowitz, Vuorinen and others and yielding new results. In particular, normal quasimeromorphic mappings, Yosida quasiregular mappings and Bloch quasiregular mappings can be viewed as classes of quasiregular mappings which arise through consideration of various metric spaces for the domain and range. We give several characterizations of these classes and obtain upper bounds on the rate of growth in each class.
Let $f(z)=\sum\limits_{j=0}^{\infty} a_j z^j$ be a transcendental entire function and let $f_\omega(z)=\sum\limits_{j=0}^{\infty}\chi_j(\omega) a_j z^j$ be a random entire function, where $\chi_j(\omega)$ are independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mu)$. In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\omega)$ and a set $E\subset [e, \infty)$ of finite logarithmic measure such that, for $r \gt r_0$ and $r\notin E$,
where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f. As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions fω and for any ϵ > 0, there is r0 such that, for $r \gt r_0$,
The Nevanlinna-type spaces $N_\varphi $ of analytic functions on the disk in the complex plane generated by strongly convex functions $\varphi $ in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in $N_\varphi $ and use these to characterize the coefficient multipliers from $N_\varphi $ into the Hardy spaces $H^p$ with $0<p\leqslant \infty $. As a by-product, we prove a representation of continuous linear functionals on $N_\varphi $.
For a bounded analytic function $\varphi $ on the unit disk $\mathbb {D}$ with $\|\varphi \|_\infty \le 1$, we consider the defect operators $D_\varphi $ and $D_{\overline \varphi }$ of the Toeplitz operators $T_{\overline \varphi }$ and $T_\varphi $, respectively, on the weighted Bergman space $A^2_\alpha $. The ranges of $D_\varphi $ and $D_{\overline \varphi }$, written as $H(\varphi )$ and $H(\overline \varphi )$ and equipped with appropriate inner products, are called sub-Bergman spaces.
We prove the following three results in the paper: for $-1<\alpha \le 0$, the space $H(\varphi )$ has a complete Nevanlinna–Pick kernel if and only if $\varphi $ is a Möbius map; for $\alpha>-1$, we have $H(\varphi )=H(\overline \varphi )=A^2_{\alpha -1}$ if and only if the defect operators $D_\varphi $ and $D_{\overline \varphi }$ are compact; and for $\alpha>-1$, we have $D^2_\varphi (A^2_\alpha )= D^2_{\overline \varphi }(A^2_\alpha )=A^2_{\alpha -2}$ if and only if $\varphi $ is a finite Blaschke product. In some sense, our restrictions on $\alpha $ here are best possible.
We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
Let $\mathcal {K}_u$ denote the class of all analytic functions f in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}$, normalised by $f(0)=f'(0)-1=0$ and satisfying $|zf'(z)/g(z)-1|<1$ in $\mathbb {D}$ for some starlike function g. Allu, Sokól and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc.108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in $\mathcal {K}_u$, and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class $\mathcal {K}_u$.