To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|^m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy–Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.
The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from $\mathbb {R}^n$ to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of $\mathbb {R}^n$—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.
To every finite metric space X, including all connected unweighted graphs with the minimum edge-distance metric, we attach an invariant that we call its blowup-polynomial $p_X(\{ n_x : x \in X \})$. This is obtained from the blowup $X[\mathbf {n}]$ – which contains $n_x$ copies of each point x – by computing the determinant of the distance matrix of $X[\mathbf {n}]$ and removing an exponential factor. We prove that as a function of the sizes $n_x$, $p_X(\mathbf {n})$ is a polynomial, is multi-affine, and is real-stable. This naturally associates a hitherto unstudied delta-matroid to each metric space X; we produce another novel delta-matroid for each tree, which interestingly does not generalize to all graphs. We next specialize to the case of $X = G$ a connected unweighted graph – so $p_G$ is “partially symmetric” in $\{ n_v : v \in V(G) \}$ – and show three further results: (a) We show that the polynomial $p_G$ is indeed a graph invariant, in that $p_G$ and its symmetries recover the graph G and its isometries, respectively. (b) We show that the univariate specialization $u_G(x) := p_G(x,\dots ,x)$ is a transform of the characteristic polynomial of the distance matrix $D_G$; this connects the blowup-polynomial of G to the well-studied “distance spectrum” of G. (c) We obtain a novel characterization of complete multipartite graphs, as precisely those for which the “homogenization at $-1$” of $p_G(\mathbf { n})$ is real-stable (equivalently, Lorentzian, or strongly/completely log-concave), if and only if the normalization of $p_G(-\mathbf { n})$ is strongly Rayleigh.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\exp (h_1(z)+C_1 z)$, where $h_1$ is an entire function of period c and $\exp (C_1 c)\neq 1$, or $f(z)=\exp (h_2(z)+C_2 z)$, where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies
Let $H^{\infty}(\Omega,X)$ be the space of bounded analytic functions $f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$ from a proper simply connected domain Ω containing the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$ into a complex Banach space X with $\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$. Let $\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$ with $\phi_{0}(r)\leq 1$ such that $\sum_{n=0}^{\infty} \phi_{n}(r)$ converges locally uniformly with respect to $r \in [0,1)$. For $1\leq p,q \lt \infty$, we denote
In this article, we extensively study the Bohr radius $R_{p,q,\phi}(\Omega,X)$, when X is an arbitrary Banach space, and $X=\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.
Beardon and Minda gave a characterization of normal families of holomorphic and meromorphic functions in terms of a locally uniform Lipschitz condition. Here, we generalize this viewpoint to families of mappings in higher dimensions that are locally uniformly continuous with respect to a given modulus of continuity. Our main application is to the normality of families of quasiregular mappings through a locally uniform Hölder condition. This provides a unified framework in which to consider families of quasiregular mappings, both recovering known results of Miniowitz, Vuorinen and others and yielding new results. In particular, normal quasimeromorphic mappings, Yosida quasiregular mappings and Bloch quasiregular mappings can be viewed as classes of quasiregular mappings which arise through consideration of various metric spaces for the domain and range. We give several characterizations of these classes and obtain upper bounds on the rate of growth in each class.
Let $f(z)=\sum\limits_{j=0}^{\infty} a_j z^j$ be a transcendental entire function and let $f_\omega(z)=\sum\limits_{j=0}^{\infty}\chi_j(\omega) a_j z^j$ be a random entire function, where $\chi_j(\omega)$ are independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mu)$. In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\omega)$ and a set $E\subset [e, \infty)$ of finite logarithmic measure such that, for $r \gt r_0$ and $r\notin E$,
where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f. As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions fω and for any ϵ > 0, there is r0 such that, for $r \gt r_0$,
The Nevanlinna-type spaces $N_\varphi $ of analytic functions on the disk in the complex plane generated by strongly convex functions $\varphi $ in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in $N_\varphi $ and use these to characterize the coefficient multipliers from $N_\varphi $ into the Hardy spaces $H^p$ with $0<p\leqslant \infty $. As a by-product, we prove a representation of continuous linear functionals on $N_\varphi $.
For a bounded analytic function $\varphi $ on the unit disk $\mathbb {D}$ with $\|\varphi \|_\infty \le 1$, we consider the defect operators $D_\varphi $ and $D_{\overline \varphi }$ of the Toeplitz operators $T_{\overline \varphi }$ and $T_\varphi $, respectively, on the weighted Bergman space $A^2_\alpha $. The ranges of $D_\varphi $ and $D_{\overline \varphi }$, written as $H(\varphi )$ and $H(\overline \varphi )$ and equipped with appropriate inner products, are called sub-Bergman spaces.
We prove the following three results in the paper: for $-1<\alpha \le 0$, the space $H(\varphi )$ has a complete Nevanlinna–Pick kernel if and only if $\varphi $ is a Möbius map; for $\alpha>-1$, we have $H(\varphi )=H(\overline \varphi )=A^2_{\alpha -1}$ if and only if the defect operators $D_\varphi $ and $D_{\overline \varphi }$ are compact; and for $\alpha>-1$, we have $D^2_\varphi (A^2_\alpha )= D^2_{\overline \varphi }(A^2_\alpha )=A^2_{\alpha -2}$ if and only if $\varphi $ is a finite Blaschke product. In some sense, our restrictions on $\alpha $ here are best possible.
We show convergence of small eigenvalues for geometrically finite hyperbolic n-manifolds under strong limits. For a class of convergent convex sets in a strongly convergent sequence of Kleinian groups, we use the spectral gap of the limit manifold and the exponentially mixing property of the geodesic flow along the strongly convergent sequence to find asymptotically uniform counting formulas for the number of orthogeodesics between the convex sets. In particular, this provides asymptotically uniform counting formulas (with respect to length) for orthogeodesics between converging Margulis tubes, geodesic loops based at converging basepoints, and primitive closed geodesics.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
Let $\mathcal {K}_u$ denote the class of all analytic functions f in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}$, normalised by $f(0)=f'(0)-1=0$ and satisfying $|zf'(z)/g(z)-1|<1$ in $\mathbb {D}$ for some starlike function g. Allu, Sokól and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc.108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in $\mathcal {K}_u$, and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class $\mathcal {K}_u$.
On all Bergman–Besov Hilbert spaces on the unit disk, we find self-adjoint weighted shift operators that are differential operators of half-order whose commutators are the identity, thereby obtaining uncertainty relations in these spaces. We also obtain joint average uncertainty relations for pairs of commuting tuples of operators on the same spaces defined on the unit ball. We further identify functions that yield equality in some uncertainty inequalities.
In this article, we establish three new versions of Landau-type theorems for bounded bi-analytic functions of the form $F(z)=\bar {z}G(z)+H(z)$, where G and H are analytic in the unit disk with $G(0)=H(0)=0$ and $H'(0)=1$. In particular, two of them are sharp, while the other one either generalizes or improves the corresponding result of Abdulhadi and Hajj. As consequences, several new sharp versions of Landau-type theorems for certain subclasses of bounded biharmonic mappings are proved.
Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $\mathcal {F}$ of (real or complex) analytic functions, such that $\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$ is countable for every x. We strengthen Erdős’ result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We use such systems to construct, assuming CH, an equivalence relation $\sim $ on $\mathbb {R}$ such that any ‘analytic-anonymous’ attempt to predict the map $x \mapsto [x]_\sim $ must fail almost everywhere. This provides a consistently negative answer to a question of Bajpai-Velleman [2].
The Fueter-Sce theorem provides a procedure to obtain axially monogenic functions, which are in the kernel of generalized Cauchy–Riemann operator in ${\mathbb{R}}^{n+1}$. This result is obtained by using two operators. The first one is the slice operator, which extends holomorphic functions of one complex variable to slice monogenic functions in $ \mathbb{R}^{n+1}$. The second one is a suitable power of the Laplace operator in n + 1 variables. Another way to get axially monogenic functions is the generalized Cauchy–Kovalevskaya (CK) extension. This characterizes axial monogenic functions by their restriction to the real line. In this paper, using the connection between the Fueter-Sce map and the generalized CK-extension, we explicitly compute the actions $\Delta_{\mathbb{R}^{n+1}}^{\frac{n-1}{2}} x^k$, where $x \in \mathbb{R}^{n+1}$. The expressions obtained is related to a well-known class of Clifford–Appell polynomials. These are the building blocks to write a Taylor series for axially monogenic functions. By using the connections between the Fueter-Sce map and the generalized CK extension, we characterize the range and the kernel of the Fueter-Sce map. Furthermore, we focus on studying the Clifford–Appell–Fock space and the Clifford–Appell–Hardy space. Finally, using the polyanalytic Fueter-Sce theorems, we obtain a new family of polyanalytic monogenic polynomials, which extends to higher dimensions the Clifford–Appell polynomials.
In this article, we study the Bohr operator for the operator-valued subordination class $S(f)$ consisting of holomorphic functions subordinate to f in the unit disk $\mathbb {D}:=\{z \in \mathbb {C}: |z|<1\}$, where $f:\mathbb {D} \rightarrow \mathcal {B}(\mathcal {H})$ is holomorphic and $\mathcal {B}(\mathcal {H})$ is the algebra of bounded linear operators on a complex Hilbert space $\mathcal {H}$. We establish several subordination results, which can be viewed as the analogs of a couple of interesting subordination results from scalar-valued settings. We also obtain a von Neumann-type inequality for the class of analytic self-mappings of the unit disk $\mathbb {D}$ which fix the origin. Furthermore, we extensively study Bohr inequalities for operator-valued polyanalytic functions in certain proper simply connected domains in $\mathbb {C}$. We obtain Bohr radius for the operator-valued polyanalytic functions of the form $F(z)= \sum _{l=0}^{p-1} \overline {z}^l \, f_{l}(z) $, where $f_{0}$ is subordinate to an operator-valued convex biholomorphic function, and operator-valued starlike biholomorphic function in the unit disk $\mathbb {D}$.
Assume that f is a real ρ-harmonic function of the unit disk $\mathbb{D}$ onto the interval $(-1,1)$, where $\rho(u,v)=R(u)$ is a metric defined in the infinite strip $(-1,1)\times \mathbb{R}$. Then we prove that $|\nabla f(z)|(1-|z|^2)\le \frac{4}{\pi}(1-f(z)^2)$ for all $z\in\mathbb{D}$, provided that ρ has a non-negative Gaussian curvature. This extends several results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality is not true for negatively curved metrics.