To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we give a complete description of closed ideals of the Banach algebra $\mathcal {B}^{s}_{p}\cap \lambda _{\alpha }$, where $\mathcal {B}^{s}_{p}$ denotes the analytic Besov space and $\lambda _{\alpha }$ is the separable analytic Lipschitz space. Our result extends several previous results in Bahajji-El Idrissi and El-Fallah (2020, Studia Mathematica 255, 209–217), Bouya (2009, Canadian Journal of Mathematics 61, 282–298), and Shirokov (1982, Izv. Ross. Akad. Nauk Ser. Mat. 46, 1316–1332).
Since 1984, many authors have studied the dynamics of maps of the form $\mathcal{E}_a(z) = e^z - a$, with $a > 1$. It is now well-known that the Julia set of such a map has an intricate topological structure known as a Cantor bouquet, and much is known about the dynamical properties of these functions.
It is rather surprising that many of the interesting dynamical properties of the maps $\mathcal{E}_a$ actually arise from their elementary function theoretic structure, rather than as a result of analyticity. We show this by studying a large class of continuous $\mathbb{R}^2$ maps, which, in general, are not even quasiregular, but are somehow analogous to $\mathcal{E}_a$. We define analogues of the Fatou and the Julia set and we prove that this class has very similar dynamical properties to those of $\mathcal{E}_a$, including the Cantor bouquet structure, which is closely related to several topological properties of the endpoints of the Julia set.
Given a holomorphic self-map $\varphi $ of $\mathbb {D}$ (the open unit disc in $\mathbb {C}$), the composition operator $C_{\varphi } f = f \circ \varphi $, $f \in H^2(\mathbb {\mathbb {D}})$, defines a bounded linear operator on the Hardy space $H^2(\mathbb {\mathbb {D}})$. The model spaces are the backward shift-invariant closed subspaces of $H^2(\mathbb {\mathbb {D}})$, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
Let u and $\varphi $ be two analytic functions on the unit disk D such that $\varphi (D) \subset D$. A weighted composition operator $uC_{\varphi }$ induced by u and $\varphi $ is defined on $A^2_{\alpha }$, the weighted Bergman space of D, by $uC_{\varphi }f := u \cdot f \circ \varphi $ for every $f \in A^2_{\alpha }$. We obtain sufficient conditions for the compactness of $uC_{\varphi }$ in terms of function-theoretic properties of u and $\varphi $. We also characterize when $uC_{\varphi }$ on $A^2_{\alpha }$ is Hilbert–Schmidt. In particular, the characterization is independent of $\alpha $ when $\varphi $ is an automorphism of D. Furthermore, we investigate the Hilbert–Schmidt difference of two weighted composition operators on $A^2_{\alpha }$.
In this paper, we mainly introduce some new notions of generalized Bloch type periodic functions namely pseudo Bloch type periodic functions and weighted pseudo Bloch type periodic functions. A Bloch type periodic function may not be Bloch type periodic under certain small perturbations while it can be quasi Bloch type periodic in sense of generalized Bloch type periodic functions. We firstly show the completeness of spaces of generalized Bloch type periodic functions and establish some further properties such as composition and convolution theorems of such functions. We then apply these results to investigate existence results for generalized Bloch type periodic mild solutions to some semi-linear differential equations in Banach spaces. The obtained results show that for each generalized Bloch type periodic input forcing disturbance, the output mild solutions to reference evolution equations remain generalized Bloch type periodic.
Li et al. [A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal. 267(12) (2014), 4753-4774] proved a spectral radius type formula for the approximation numbers of composition operators on analytic Hilbert spaces with radial weights and on $H^{p}$ spaces, $p\geq 1$, involving Green capacity. We prove that their formula holds for a wide class of Banach spaces of analytic functions and weights.
In this paper, we consider the family of nth degree polynomials whose coefficients form a log-convex sequence (up to binomial weights), and investigate their roots. We study, among others, the structure of the set of roots of such polynomials, showing that it is a closed convex cone in the upper half-plane, which covers its interior when n tends to infinity, and giving its precise description for every $n\in \mathbb {N}$, $n\geq 2$. Dual Steiner polynomials of star bodies are a particular case of them, and so we derive, as a consequence, further properties for their roots.
We prove that the set of all endpoints of the Julia set of $f(z)=\exp\!(z)-1$ which escape to infinity under iteration of f is not homeomorphic to the rational Hilbert space $\mathfrak E$. As a corollary, we show that the set of all points $z\in \mathbb C$ whose orbits either escape to $\infty$ or attract to 0 is path-connected. We extend these results to many other functions in the exponential family.
We investigate Carlson–Griffiths’ equidistribution theory of meormorphic mappings from a complete Kähler manifold into a complex projective algebraic manifold. By using a technique of Brownian motions developed by Atsuji, we obtain a second main theorem in Nevanlinna theory provided that the source manifold is of nonpositive sectional curvature. In particular, a defect relation follows if some growth condition is imposed.
We consider meromorphic solutions of functional-differential equations
\[ f^{(k)}(z)=a(f^{n}\circ g)(z)+bf(z)+c, \]
where $n,\,~k$ are two positive integers. Firstly, using an elementary method, we describe the forms of $f$ and $g$ when $f$ is rational and $a(\neq 0)$, $b$, $c$ are constants. In addition, by employing Nevanlinna theory, we show that $g$ must be linear when $f$ is transcendental and $a(\neq 0)$, $b$, $c$ are polynomials in $\mathbb {C}$.
Although detailed descriptions of the possible types of behaviour inside periodic Fatou components have been known for over 100 years, a classification of wandering domains has only recently been given. Recently, simply connected wandering domains were classified into nine possible types and examples of escaping wandering domains of each of these types were constructed. Here we consider the case of oscillating wandering domains, for which only six of these types are possible. We use a new technique based on approximation theory to construct examples of all six types of oscillating simply connected wandering domains. This requires delicate arguments since oscillating wandering domains return infinitely often to a bounded part of the plane. Our technique is inspired by that used by Eremenko and Lyubich to construct the first example of an oscillating wandering domain, but with considerable refinements which enable us to show that the wandering domains are bounded, to specify the degree of the mappings between wandering domains and to give precise descriptions of the dynamical behaviour of these mappings.
A function which is transcendental and meromorphic in the plane has at least two singular values. On the one hand, if a meromorphic function has exactly two singular values, it is known that the Hausdorff dimension of the escaping set can only be either $2$ or $1/2$. On the other hand, the Hausdorff dimension of escaping sets of Speiser functions can attain every number in $[0,2]$ (cf. [M. Aspenberg and W. Cui. Hausdorff dimension of escaping sets of meromorphic functions. Trans. Amer. Math. Soc.374(9) (2021), 6145–6178]). In this paper, we show that number of singular values which is needed to attain every Hausdorff dimension of escaping sets is not more than $4$.
Recall that two geodesics in a negatively curved surface S are of the same type if their free homotopy classes differ by a homeomorphism of the surface. In this note we study the distribution in the unit tangent bundle of the geodesics of fixed type, proving that they are asymptotically equidistributed with respect to a certain measure ${\mathfrak {m}}^S$ on $T^1S$. We study a few properties of this measure, showing for example that it distinguishes between hyperbolic surfaces.
In this paper, we consider an equivalence relation on the space $AP(\mathbb {R},X)$ of almost periodic functions with values in a prefixed Banach space X. In this context, it is known that the normality or Bochner-type property, which characterizes these functions, is based on the relative compactness of the family of translates. Now, we prove that every equivalence class is sequentially compact and the family of translates of a function belonging to this subspace is dense in its own class, i.e., the condition of almost periodicity of a function $f\in AP(\mathbb {R},X)$ yields that every sequence of translates of f has a subsequence that converges to a function equivalent to f. This extends previous work by the same authors on the case of numerical almost periodic functions.
In this article, we establish an explicit correspondence between kissing reflection groups and critically fixed anti-rational maps. The correspondence, which is expressed using simple planar graphs, has several dynamical consequences. As an application of this correspondence, we give complete answers to geometric mating problems for critically fixed anti-rational maps.
For $0<\lambda ,p<1$, the Dirichlet–Morrey space $\mathcal {D}_p^{\lambda } $ is the space of all analytic function on the unit disc such that the measure $ |f'(z)|^2(1-|z|^2)^pdA(z)$ is a $p\lambda $-Carleson measure. In this paper, we show that the corona theorem and the Wolff theorem hold for the multiplier algebra of Dirichlet–Morrey spaces.
Let $\mathcal {B}(\mathcal {H})$ be the algebra of all bounded linear operators on a complex Hilbert space $\mathcal {H}$. In this paper, we first establish several sharp improved and refined versions of the Bohr’s inequality for the functions in the class $H^{\infty }(\mathbb {D},\mathcal {B}(\mathcal {H}))$ of bounded analytic functions from the unit disk $\mathbb {D}:=\{z \in \mathbb {C}:|z|<1\}$ into $\mathcal {B}(\mathcal {H})$. For the complete circular domain $Q \subset \mathbb {C}^{n}$, we prove the multidimensional analogues of the operator valued Bohr-type inequality which can be viewed as a special case of the result by G. Popescu [Adv. Math. 347 (2019), 1002–1053] for free holomorphic functions on polyballs. Finally, we establish the multidimensional analogues of several improved Bohr’s inequalities for operator valued functions in Q.
We investigate the behaviour of families of meromorphic functions in the neighbourhood of points of non-normality and prove certain covering properties that complement Montel’s Theorem. In particular, we also obtain characterisations of non-normality in terms of such properties.
We extend our study of variability regions, Ali et al. [‘An application of Schur algorithm to variability regions of certain analytic functions–I’, Comput. Methods Funct. Theory, to appear] from convex domains to starlike domains. Let $\mathcal {CV}(\Omega )$ be the class of analytic functions f in ${\mathbb D}$ with $f(0)=f'(0)-1=0$ satisfying $1+zf''(z)/f'(z) \in {\Omega }$. As an application of the main result, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$. By choosing a particular $\Omega $, we obtain the precise variability regions of $\log f'(z_0)$ for some well-known subclasses of analytic and univalent functions.
Given an integer $g>2$, we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.