To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is known that a countable $\omega $-categorical structure interprets all finite structures primitively positively if and only if its polymorphism clone maps to the clone of projections on a two-element set via a continuous clone homomorphism. We investigate the relationship between the existence of a clone homomorphism to the projection clone, and the existence of such a homomorphism which is continuous and thus meets the above criterion.
A new class of functions with a unique identification minor is introduced: functions determined by content and singletons. Relationships between this class and other known classes of functions with a unique identification minor are investigated. Some properties of functions determined by content and singletons are established, especially concerning invariance groups and similarity.
The equational complexity function $\beta \nu \,:\,{\open N} \to {\open N}$ of an equational class of algebras bounds the size of equation required to determine the membership of n-element algebras in . Known examples of finitely generated varieties with unbounded equational complexity have growth in Ω(nc), usually for c ≥ (1/2). We show that much slower growth is possible, exhibiting $O(\log_{2}^{3}(n))$ growth among varieties of semilattice-ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational complexity function, bounded if and only if all Sylow subgroups are abelian.
We establish a new sufficient condition under which a monoid is nonfinitely based and apply this condition to Lee monoids $L_{\ell }^{1}$, obtained by adjoining an identity element to the semigroup generated by two idempotents $a$ and $b$ with the relation $0=abab\cdots \,$ (length $\ell$). We show that every monoid $M$ which generates a variety containing $L_{5}^{1}$ and is contained in the variety generated by $L_{\ell }^{1}$ for some $\ell \geq 5$ is nonfinitely based. We establish this result by analysing $\unicode[STIX]{x1D70F}$-terms for $M$, where $\unicode[STIX]{x1D70F}$ is a certain nontrivial congruence on the free semigroup. We also show that if $\unicode[STIX]{x1D70F}$ is the trivial congruence on the free semigroup and $\ell \leq 5$, then the $\unicode[STIX]{x1D70F}$-terms (isoterms) for $L_{\ell }^{1}$ carry no information about the nonfinite basis property of $L_{\ell }^{1}$.
Given a partial action $\unicode[STIX]{x1D703}$ of a group on a set with an algebraic structure, we construct a reflector of $\unicode[STIX]{x1D703}$ in the corresponding subcategory of global actions and study the question when this reflector is a globalization. In particular, if $\unicode[STIX]{x1D703}$ is a partial action on an algebra from a variety $\mathsf{V}$, then we show that the problem reduces to the embeddability of a certain generalized amalgam of $\mathsf{V}$-algebras associated with $\unicode[STIX]{x1D703}$. As an application, we describe globalizable partial actions on semigroups, whose domains are ideals.
A permutoid is a set of partial permutations that contains the identity and is such that partial compositions, when defined, have at most one extension in the set. In 2004 Peter Cameron conjectured that there can exist no algorithm that determines whether or not a permutoid based on a finite set can be completed to a finite permutation group. In this note we prove Cameron’s conjecture by relating it to our recent work on the profinite triviality problem for finitely presented groups. We also prove that the existence problem for finite developments of rigid pseudogroups is unsolvable. In an appendix, Steinberg recasts these results in terms of inverse semigroups.
Skew Boolean algebras for which pairs of elements have natural meets, called intersections, are studied from a universal algebraic perspective. Their lattice of varieties is described and shown to coincide with the lattice of quasi-varieties. Some connections of relevance to arbitrary skew Boolean algebras are also established.
In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. The present paper provides an extension of this duality to a much more general class of so-called quasipolytopes, that is, convex sets with polytopes as closures. The dual spaces of quasipolytopes are Płonka sums of open polytopes, which are considered as barycentric algebras with some additional operations. In constructing this duality, we use several known and new dualities: the Hofmann–Mislove–Stralka duality for semilattices; the Romanowska–Ślusarski–Smith duality for polytopes; a new duality for open polytopes; and a new duality for injective Płonka sums of polytopes.
In this paper, we investigate strongly regular congruences on $E$-inversive semigroups $S$. We describe the complete lattice homomorphism of strongly regular congruences, which is a generalization of an open problem of Pastijn and Petrich for regular semigroups. An abstract characterization of left and right traces for strongly regular congruences is given. The strongly regular (sr) congruences on $E$-inversive semigroups $S$ are described by means of certain strongly regular congruence triples $({\it\gamma},K,{\it\delta})$ consisting of certain sr-normal equivalences ${\it\gamma}$ and ${\it\delta}$ on $E(S)$ and a certain sr-normal subset $K$ of $S$. Further, we prove that each strongly regular congruence on $E$-inversive semigroups $S$ is uniquely determined by its associated strongly regular congruence triple.
We address the question of the dualizability of nilpotent Mal’cev algebras, showing that nilpotent finite Mal’cev algebras with a nonabelian supernilpotent congruence are inherently nondualizable. In particular, finite nilpotent nonabelian Mal’cev algebras of finite type are nondualizable if they are direct products of algebras of prime power order. We show that these results cannot be generalized to nilpotent algebras by giving an example of a group expansion of infinite type that is nilpotent and nonabelian, but dualizable. To our knowledge this is the first construction of a nonabelian nilpotent dualizable algebra. It has the curious property that all its nonabelian finitary reducts with group operation are nondualizable. We were able to prove dualizability by utilizing a new clone theoretic approach developed by Davey, Pitkethly, and Willard. Our results suggest that supernilpotence plays an important role in characterizing dualizability among Mal’cev algebras.
For a finite Clifford inverse algebra $A$, with natural order meet-semilattice ${Y}_{A} $ and group of units ${G}_{A} $, we show that the inverse monoid obtained as the semidirect product ${ Y}_{A}^{1} {\mathop{\ast }\nolimits}_{\rho } {G}_{A} $ has a log-polynomial free spectrum whenever $\rho $ is a term-expressible left action of ${G}_{A} $ on ${Y}_{A} $ and all subgroups of $A$ are nilpotent. This yields a number of examples of finite inverse monoids satisfying the Seif conjecture on finite monoids whose free spectra are not doubly exponential.
The homomorphic image of a congruence is always a tolerance (relation) but, within a given variety, a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterise varieties whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that the variety of semilattices, all varieties of lattices, and all varieties of unary algebras have TImC. We show that a congruence n-permutable variety has TImC if and only if it is congruence permutable, and construct an idempotent variety with a majority term that fails TImC.
We devise a fairly general sufficient condition ensuring that the endomorphism monoid of a countably infinite ultrahomogeneous structure (i.e. a Fraïssé limit) embeds all countable semigroups. This approach not only provides us with a framework unifying the previous scattered results in this vein, but actually yields new applications for endomorphism monoids of the (rational) Urysohn space and the countable universal ultrahomogeneous semilattice.
We give an explicit description of the free objects in the quasivariety of adequate semigroups, as sets of labelled directed trees under a natural combinatorial multiplication. The morphisms of the free adequate semigroup onto the free ample semigroup and into the free inverse semigroup are realised by a combinatorial ‘folding’ operation which transforms our trees into Munn trees. We use these results to show that free adequate semigroups and monoids are 𝒥-trivial and never finitely generated as semigroups, and that those which are finitely generated as (2,1,1)-algebras have decidable word problem.
Recent research of the author has studied edge-labelled directed trees under a natural multiplication operation. The class of all such trees (with a fixed labelling alphabet) has an algebraic interpretation, as a free object in the class of adequate semigroups. We consider here a natural subclass of these trees, defined by placing a restriction on edge orientations, and show that the resulting algebraic structure is a free object in the class of left adequate semigroups. Through this correspondence we establish some structural and algorithmic properties of free left adequate semigroups and monoids, and consequently of the category of all left adequate semigroups.
We investigate natural dualities for classes of simple graphs. For example, we give a natural duality for the class consisting of all n-colourable graphs and show that, for all n≥3, there is no natural duality for the class consisting of all freely n-colourable graphs. We also prove that there exist arbitrarily long finite chains of 3-colourable graphs that alternate between being dualizable and nondualizable.
We show that if A is a stable basis algebra satisfying the distributivity condition, then B is a reduct of an independence algebra A having the same rank. If this rank is finite, then the endomorphism monoid of B is a left order in the endomorphism monoid of A.
For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.
A variety is said to be a Rees–Sushkevich variety if it is contained in a periodic variety generated by 0-simple semigroups. Recently, all combinatorial Rees–Sushkevich varieties have been shown to be finitely based. The present paper continues the investigation of these varieties by describing those that are Cross, finitely generated, or small. It is shown that within the lattice of combinatorial Rees–Sushkevich varieties, the set ℱ of finitely generated varieties constitutes an incomplete sublattice and the set 𝒮 of small varieties constitutes a strict incomplete sublattice of ℱ. Consequently, a combinatorial Rees–Sushkevich variety is small if and only if it is Cross. An algorithm is also presented that decides if an arbitrarily given finite set Σ of identities defines, within the largest combinatorial Rees–Sushkevich variety, a subvariety that is finitely generated or small. This algorithm has complexity 𝒪(nk) where n is the number of identities in Σ and k is the length of the longest word in Σ.