To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We adapt the abstract concepts of abelianness and centrality of universal algebra to the context of inverse semigroups. We characterize abelian and central congruences in terms of the corresponding congruence pairs. We relate centrality to conjugation in inverse semigroups. Subsequently, we prove that solvable and nilpotent inverse semigroups are groups.
We show that the set of Liouville numbers has a rich set-theoretic structure: it can be partitioned in an explicit way into an uncountable collection of subsets, each of which is dense in the real line. Furthermore, each of these partitioning subsets can be similarly partitioned, and the process can be repeated indefinitely.
We investigate semigroups S which have the property that every subsemigroup of $S\times S$ which contains the diagonal $\{ (s,s)\colon s\in S\}$ is necessarily a congruence on S. We call such an S a DSC semigroup. It is well known that all finite groups are DSC, and easy to see that every DSC semigroup must be simple. Building on this, we show that for broad classes of semigroups, including periodic, stable, inverse and several well-known types of simple semigroups, the only DSC members are groups. However, it turns out that there exist nongroup DSC semigroups, which we obtain by utilising a construction introduced by Byleen for the purpose of constructing interesting congruence-free semigroups. Such examples can additionally be regular or bisimple.
Clans are categorical representations of generalized algebraic theories that contain more information than the finite-limit categories associated to the locally finitely presentable categories of models via Gabriel–Ulmer duality. Extending Gabriel–Ulmer duality to account for this additional information, we present a duality theory between clans and locally finitely presentable categories equipped with a weak factorization system of a certain kind.
This article is the second in a series investigating cartesian closed varieties. In first of these, we showed that every non-degenerate finitary cartesian variety is a variety of sets equipped with an action by a Boolean algebra B and a monoid M which interact to form what we call a matched pair ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$. In this article, we show that such pairs ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$ are equivalent to Boolean restriction monoids and also to ample source-étale topological categories; these are generalizations of the Boolean inverse monoids and ample étale topological groupoids used to encode self-similar structures such as Cuntz and Cuntz–Krieger $C^\ast$-algebras, Leavitt path algebras, and the $C^\ast$-algebras associated with self-similar group actions. We explain and illustrate these links and begin the programme of understanding how topological and algebraic properties of such groupoids can be understood from the logical perspective of the associated varieties.
We examine the consequences of having a total division operation $\frac {x}{y}$ on commutative rings. We consider two forms of binary division, one derived from a unary inverse, the other defined directly as a general operation; each are made total by setting $1/0$ equal to an error value $\bot $, which is added to the ring. Such totalised divisions we call common divisions. In a field the two forms are equivalent and we have a finite equational axiomatisation E that is complete for the equational theory of fields equipped with common division, which are called common meadows. These equational axioms E turn out to be true of commutative rings with common division but only when defined via inverses. We explore these axioms E and their role in seeking a completeness theorem for the conditional equational theory of common meadows. We prove they are complete for the conditional equational theory of commutative rings with inverse based common division. By adding a new proof rule, we can prove a completeness theorem for the conditional equational theory of common meadows. Although, the equational axioms E fail with common division defined directly, we observe that the direct division does satisfy the equations in E under a new congruence for partial terms called eager equality.
For any $n<\omega $ we construct an infinite $(n+1)$-generated Heyting algebra whose n-generated subalgebras are of cardinality $\leq m_n$ for some positive integer $m_n$. From this we conclude that for every $n<\omega $ there exists a variety of Heyting algebras which contains an infinite $(n+1)$-generated algebra, but which contains only finite n-generated algebras. For the case $n=2$ this provides a negative answer to a question posed by G. Bezhanishvili and R. Grigolia in [4].
A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this property. It is also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains, respectively.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
In a recent paper, motivated by the study of central extensions of associative algebras, George Janelidze introduces the notion of weakly action representable category. In this paper, we show that the category of Leibniz algebras is weakly action representable and we characterize the class of acting morphisms. Moreover, we study the representability of actions of the category of Poisson algebras and we prove that the subvariety of commutative Poisson algebras is not weakly action representable.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.
C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky’s construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
We study the embedding property in the category of sorted profinite groups. We introduce a notion of the sorted embedding property (SEP), analogous to the embedding property for profinite groups. We show that any sorted profinite group has a universal SEP-cover. Our proof gives an alternative proof for the existence of a universal embedding cover of a profinite group. Also our proof works for any full subcategory of the sorted profinite groups, which is closed under taking finite quotients, fibre products, and inverse limits. We also show that any sorted profinite group having SEP has a sorted complete system whose theory is $\omega $-categorical and $\omega $-stable under the assumption that the set of sorts is countable.
For every group G, the set $\mathcal {P}(G)$ of its subsets forms a semiring under set-theoretical union $\cup $ and element-wise multiplication $\cdot $, and forms an involution semigroup under $\cdot $ and element-wise inversion ${}^{-1}$. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring $(\mathcal {P}(G),\cup ,\cdot )$ nor the involution semigroup $(\mathcal {P}(G),\cdot ,{}^{-1})$ admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
In this paper, we determine the homotopy types of the Morse complexes of certain collections of simplicial complexes by studying dominating vertices or strong collapses. We show that if K contains two leaves that share a common vertex, then its Morse complex is strongly collapsible and hence has the homotopy type of a point. We also show that the pure Morse complex of a tree is strongly collapsible, thereby recovering as a corollary a result of Ayala et al. (2008, Topology and Its Applications 155, 2084–2089). In addition, we prove that the Morse complex of a disjoint union $K\sqcup L$ is the Morse complex of the join $K*L$. This result is used to compute the homotopy type of the Morse complex of some families of graphs, including Caterpillar graphs, as well as the automorphism group of a disjoint union for a large collection of disjoint complexes.