To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the point degree spectrum of a represented space as a substructure of the Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, continuous degrees and so on. The notion of point degree spectrum creates a connection among various areas of mathematics, including computability theory, descriptive set theory, infinite-dimensional topology and Banach space theory. Through this new connection, for instance, we construct a family of continuum many infinite-dimensional Cantor manifolds with property C whose Borel structures at an arbitrary finite rank are mutually nonisomorphic. This resolves a long-standing question by Jayne and strengthens various theorems in infinite-dimensional topology such as Pol’s solution to Alexandrov’s old problem.
We introduce and prove the consistency of a new set theoretic axiom we call the Invariant Ideal Axiom. The axiom enables us to provide (consistently) a full topological classification of countable sequential groups, as well as fully characterize the behavior of their finite products.
We also construct examples that demonstrate the optimality of the conditions in IIA and list a number of open questions.
We consider a real-valued function f defined on the set of infinite branches X of a countably branching pruned tree T. The function f is said to be a limsup function if there is a function $u \colon T \to \mathbb {R}$ such that $f(x) = \limsup _{t \to \infty } u(x_{0},\dots ,x_{t})$ for each $x \in X$. We study a game characterization of limsup functions, as well as a novel game characterization of functions of Baire class 1.
We prove a number of results about countable Borel equivalence relations with forcing constructions and arguments. These results reveal hidden regularity properties of Borel complete sections on certain orbits. As consequences they imply the nonexistence of Borel complete sections with certain features.
A number of spectrum constructions have been devised to extract topological spaces from algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative unital C*-algebra and the Hofmann–Lawson spectrum of a continuous frame.
Inspired by the examples above, we define a spectrum for localic semirings. We use arguments in the symmetric monoidal category of suplattices to prove that, under conditions satisfied by the aforementioned examples, the spectrum can be constructed as the frame of overt weakly closed radical ideals and that it reduces to the usual constructions in those cases. Our proofs are constructive.
Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in general should contain additional ‘differential’ information about the semiring.
In this paper it is shown that for a minimal system $(X,T)$ and $d,k\in \mathbb {N}$, if $(x,x_{i})$ is regionally proximal of order d for $1\leq i\leq k$, then $(x,x_{1},\ldots ,x_{k})$ is $(k+1)$-regionally proximal of order d. Meanwhile, we introduce the notion of $\mathrm {IN}^{[d]}$-pair: for a dynamical system $(X,T)$ and $d\in \mathbb {N}$, a pair $(x_{0},x_{1})\in X\times X$ is called an $\mathrm {IN}^{[d]}$-pair if for any $k\in \mathbb {N}$ and any neighborhoods $U_{0} ,U_{1} $ of $x_{0}$ and $x_{1}$ respectively, there exist different $(p_{1}^{(i)},\ldots ,p_{d}^{(i)})\in \mathbb {N}^{d} , 1\leq i\leq k$, such that
where $\mathrm {Ind}(U_{0},U_{1})$ denotes the collection of all independence sets for $(U_{0},U_{1})$. It turns out that for a minimal system, if it does not contain any non-trivial $\mathrm {IN}^{[d]}$-pair, then it is an almost one-to-one extension of its maximal factor of order d.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
Erdős space $\mathfrak {E}$ and complete Erdős space $\mathfrak {E}_{c}$ have been previously shown to have topological characterizations. In this paper, we provide a topological characterization of the topological space $\mathbb {Q}\times \mathfrak {E}_{c}$, where $\mathbb {Q}$ is the space of rational numbers. As a corollary, we show that the Vietoris hyperspace of finite sets $\mathcal {F}(\mathfrak {E}_{c})$ is homeomorphic to $\mathbb {Q}\times \mathfrak {E}_{c}$. We also characterize the factors of $\mathbb {Q}\times \mathfrak {E}_{c}$. An interesting open question that is left open is whether $\sigma \mathfrak {E}_{c}^{\omega }$, the $\sigma $-product of countably many copies of $\mathfrak {E}_{c}$, is homeomorphic to $\mathbb {Q}\times \mathfrak {E}_{c}$.
We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level $\omega _1$ (that is, the ones that are closed under Borel preimages) and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep (namely, that every non-selfdual Wadge class can be expressed as the result of a Hausdorff operation applied to the open sets). The exposition is self-contained, except for facts from classical descriptive set theory.
In finite group theory, chief factors play an important and well-understood role in the structure theory. We here develop a theory of chief factors for Polish groups. In the development of this theory, we prove a version of the Schreier refinement theorem. We also prove a trichotomy for the structure of topologically characteristically simple Polish groups.
The development of the theory of chief factors requires two independently interesting lines of study. First we consider injective, continuous homomorphisms with dense normal image. We show such maps admit a canonical factorisation via a semidirect product, and as a consequence, these maps preserve topological simplicity up to abelian error. We then define two generalisations of direct products and use these to isolate a notion of semisimplicity for Polish groups.
A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.
It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.
We prove that for $C^0$-generic homeomorphisms, acting on a compact smooth boundaryless manifold with dimension greater than one, the upper metric mean dimension with respect to the smooth metric coincides with the dimension of the manifold. As an application, we show that the upper box dimension of the set of periodic points of a $C^0$-generic homeomorphism is equal to the dimension of the manifold. In the case of continuous interval maps, we prove that each level set for the metric mean dimension with respect to the Euclidean distance is $C^0$-dense in the space of continuous endomorphisms of $[0,1]$ with the uniform topology. Moreover, the maximum value is attained at a $C^0$-generic subset of continuous interval maps and a dense subset of metrics topologically equivalent to the Euclidean distance.
Let $\mathcal {G}$ be a second countable, Hausdorff topological group. If $\mathcal {G}$ is locally compact, totally disconnected and T is an expansive automorphism then it is shown that the dynamical system $(\mathcal {G}, T)$ is topologically conjugate to the product of a symbolic full-shift on a finite number of symbols, a totally wandering, countable-state Markov shift and a permutation of a countable coset space of $\mathcal {G}$ that fixes the defining subgroup. In particular if the automorphism is transitive then $\mathcal {G}$ is compact and $(\mathcal {G}, T)$ is topologically conjugate to a full-shift on a finite number of symbols.
We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \textrm{C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$. For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$.
It is shown that the Ellis semigroup of a $\mathbb Z$-action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a $\mathbb Z$- or $\mathbb R$-action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.
We prove the Decomposability Conjecture for functions of Baire class $2$ from a Polish space to a separable metrizable space. This partially answers an important open problem in descriptive set theory.
We provide a finite basis for the class of Borel functions that are not in the first Baire class, as well as the class of Borel functions that are not $\sigma $-continuous with closed witnesses.