To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend Følner’s amenability criterion to the realm of general topological groups. Building on this, we show that a topological group $G$ is amenable if and only if its left-translation action can be approximated in a uniform manner by amenable actions on the set $G$. As applications we obtain a topological version of Whyte’s geometric solution to the von Neumann problem and give an affirmative answer to a question posed by Rosendal.
The group of ${\mathcal{C}}^{1}$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson’s groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional generalizations $nV$ of Thompson’s group $V$ arise when we consider products of central ternary Cantor sets. We derive that the ${\mathcal{C}}^{2}$-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer [‘Characteristic exponents of dynamical systems in metric spaces’, Ergodic Theory Dynam. Systems3(1) (1983), 119–127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.
We present a general framework for automatic continuity results for groups of isometries of metric spaces. In particular, we prove automatic continuity property for the groups of isometries of the Urysohn space and the Urysohn sphere, i.e. that any homomorphism from either of these groups into a separable group is continuous. This answers a question of Ben Yaacov, Berenstein and Melleray. As a consequence, we get that the group of isometries of the Urysohn space has unique Polish group topology and the group of isometries of the Urysohn sphere has unique separable group topology. Moreover, as an application of our framework we obtain new proofs of the automatic continuity property for the group $\text{Aut}([0,1],\unicode[STIX]{x1D706})$, due to Ben Yaacov, Berenstein and Melleray and for the unitary group of the infinite-dimensional separable Hilbert space, due to Tsankov.
Ott, Tomforde and Willis proposed a useful compactification for one-sided shifts over infinite alphabets. Building from their idea, we develop a notion of two-sided shift spaces over infinite alphabets, with an eye towards generalizing a result of Kitchens. As with the one-sided shifts over infinite alphabets, our shift spaces are compact Hausdorff spaces but, in contrast to the one-sided setting, our shift map is continuous everywhere. We show that many of the classical results from symbolic dynamics are still true for our two-sided shift spaces. In particular, while for one-sided shifts the problem about whether or not any $M$-step shift is conjugate to an edge shift space is open, for two-sided shifts we can give a positive answer for this question.
We introduce the open degree of a compact space, and we show that for every natural number $n$, the separable Rosenthal compact spaces of degree $n$ have a finite basis.
A class of abelian topological groups was previously defined to be a variety of topological groups with coproducts if it is closed under forming subgroups, quotients, products and coproducts in the category of all abelian topological groups and continuous homomorphisms. This extended research on varieties of topological groups initiated by the second author. The key to describing varieties of topological groups generated by various classes was proving that all topological groups in the variety are a quotient of a subgroup of a product of groups in the generating class. This paper analyses generating varieties of topological groups with coproducts. It focuses on the interplay between forming products and coproducts. It is proved that the variety of topological groups with coproducts generated by all discrete groups contains topological groups which cannot be expressed as a quotient of a subgroup of a product of a coproduct of discrete groups. It is proved that the variety of topological groups with coproducts generated by any infinite-dimensional Hilbert space contains all infinite-dimensional Hilbert spaces, answering an open question. This contrasts with the result that a variety of topological groups generated by a topological group does not contain any infinite-dimensional Hilbert space of greater cardinality.
In this paper we first give a negative answer to a question of Amini-Harandi [‘Best proximity point theorems for cyclic strongly quasi-contraction mappings’, J. Global Optim.56 (2013), 1667–1674] on a best proximity point theorem for cyclic quasi-contraction maps. Then we prove some new results on best proximity point theorems that show that results of Amini-Harandi for cyclic strongly quasi-contractions are true under weaker assumptions.
In this paper, we establish a convergence theorem for fixed points of generalised weak contractions in complete metric spaces under some new control conditions on the functions. An illustrative example of a generalised weak contraction is discussed to show how the new conditions extend known results.
In this paper, it is shown that there exists a connected topological group which is not homeomorphic to any $\omega $-narrow topological group, and also that there exists a zero-dimensional topological group $G$ with neutral element $e$ such that the subspace $X = G\setminus \{e\}$ is not homeomorphic to any topological group. These two results give negative answers to two open problems in Arhangel’skii and Tkachenko [Topological Groups and Related Structures (Atlantis Press, Amsterdam, 2008)]. We show that if a compact topological group is a $K$-space, then it is metrisable. This result gives an affirmative answer to a question posed by Malykhin and Tironi [‘Weakly Fréchet–Urysohn and Pytkeev spaces’, Topology Appl. 104 (2000), 181–190] in the category of topological groups. We also prove that a regular $K$-space $X$ is a weakly Fréchet–Urysohn space if and only if $X$has countable tightness.
We demonstrate a construction that will densely embed a Moore space into a Moore space with the Baire property when this is possible. We also show how this technique generates a new ‘if and only if’ condition for determining when Moore spaces can be densely embedded in Moore spaces with the Baire property, and briefly discuss how this condition can can be used to generate new proofs that certain Moore spaces cannot be densely embedded in Moore spaces with the Baire property.
We introduce the notion of wide representation of an inverse semigroup and prove that with a suitably defined topology there is a space of germs of such a representation that has the structure of an étale groupoid. This gives an elegant description of Paterson's universal groupoid and of the translation groupoid of Skandalis, Tu and Yu. In addition, we characterize the inverse semigroups that arise from groupoids, leading to a precise bijection between the class of étale groupoids and the class of complete and infinitely distributive inverse monoids equipped with suitable representations, and we explain the sense in which quantales and localic groupoids carry a generalization of this correspondence.
Given a metrizable locally convex-solid Riesz space of measurable functions we provide a procedure to construct a minimal Fréchet (function) lattice containing it, called its Fatou completion. As an application, we obtain that the Fatou completion of the space L1(ν) of integrable functions with respect to a Fréchet-space-valued measure ν is the space L1w(ν) of scalarly ν-integrable functions. Further consequences are also given.
Using a variational method introduced in [D. Azé and J.-N. Corvellec, ‘A variational method in fixed point results with inwardness conditions’, Proc. Amer. Math. Soc.134(12) (2006), 3577–3583], deriving directly from the Ekeland principle, we give a general result on the existence of a fixed point for a very general class of multifunctions, generalizing the recent results of [Y. Feng and S. Liu, ‘Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings’, J. Math. Anal. Appl.317(1) (2006), 103–112; D. Klim and D. Wardowski, ‘Fixed point theorems for set-valued contractions in complete metric spaces’, J. Math. Anal. Appl.334(1) (2007), 132–139]. Moreover, we give a sharp estimate for the distance to the fixed-points set.
In this paper, we introduce an iterative scheme using an extragradient method for finding a common element of the set of solutions of a generalized equilibrium problem, the set of fixed points of a nonexpansive mapping and the set of the variational inequality for a monotone, Lipschitz-continuous mapping. We obtain a weak convergence theorem for three sequences generated by this process. Based on this result, we also obtain several interesting results. The results in this paper generalize and extend some well-known weak convergence theorems in the literature.
Let (N,ℝ,θ) be a centrally ergodic W* dynamical system. When N is not a factor, we show that for each nonzero real number t, the crossed product induced by the time t automorphism θt is not a factor if and only if there exist a rational number r and an eigenvalue s of the restriction of θ to the center of N, such that rst=2π. In the C* setting, minimality seems to be the notion corresponding to central ergodicity. We show that if (A,ℝ,α) is a minimal unital C* dynamical system and A is not simple, then, for each nonzero real number t, the crossed product induced by the time t automorphism αt is not simple if there exist a rational number r and an eigenvalue s of the restriction of α to the center of A, such that rst=2π. The converse is true if, in addition, A is commutative or prime.
It is shown that the dual of the space Cp(I) of all real-valued continuous functions on the closed unit interval with the pointwise topology, when equipped with the Mackey topology, is a non K-analytic but weakly analytic locally convex space.
We give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.
This paper characterizes the K-analyticity-framedness in ℝX for Cp(X) (the space of real-valued continuous functions on X with pointwise topology) in terms of Cp(X). This is used to extend Tkachuk’s result about the K-analyticity of spaces Cp(X) and to supplement the Arkhangel ′skiĭ–Calbrix characterization of σ-compact cosmic spaces. A partial answer to an Arkhangel ′skiĭ–Calbrix problem is also provided.
It is well known that an orientation-preserving homeomorphism of the plane without fixed points has trivial dynamics; that is, its non-wandering set is empty and all the orbits diverge to infinity. However, orbits can diverge to infinity in many different ways (or not) giving rise to fundamental regions of divergence. Such a map is topologically equivalent to a plane translation if and only if it has only one fundamental region. We consider the conservative, orientation-preserving and fixed point free Hénon map and prove that it has only one fundamental region of divergence. Actually, we prove that there exists an area-preserving homeomorphism of the plane that conjugates this Hénon map to a translation.