To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper is related to some recent studies in Abdollahi and Russo [‘On a problem of P. Hall for Engel words’, Arch. Math. (Basel)97 (2011), 407–412] and Fernández-Alcober et al. [‘A note on conciseness of Engel words’, Comm. Algebra40 (2012), 2570–2576] on the position of the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$-Engel marginal subgroup $E^*_n(G)$ of a group $G$, when $n=3,4$. Describing the size of $E^*_n(G)$ for $n=3,4$, we show some generalisations of classical results on the partial margins of $E^*_3(G)$ and $E^*_4(G)$.
As a contribution to an eventual solution of the problem of the determination of the maximal subgroups of the Monster we prove that the Monster does not contain any subgroup isomorphic to $\mathrm{PSL}_2(27)$.
Let $\mathfrak{F}$ be a locally compact nonarchimedean field with residue characteristic $p$, and let $\mathrm{G} $ be the group of $\mathfrak{F}$-rational points of a connected split reductive group over $\mathfrak{F}$. For $k$ an arbitrary field of any characteristic, we study the homological properties of the Iwahori–Hecke $k$-algebra ${\mathrm{H} }^{\prime } $ and of the pro-$p$ Iwahori–Hecke $k$-algebra $\mathrm{H} $ of $\mathrm{G} $. We prove that both of these algebras are Gorenstein rings with self-injective dimension bounded above by the rank of $\mathrm{G} $. If $\mathrm{G} $ is semisimple, we also show that this upper bound is sharp, that both $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ are Auslander–Gorenstein, and that there is a duality functor on the finite length modules of $\mathrm{H} $ (respectively ${\mathrm{H} }^{\prime } $). We obtain the analogous Gorenstein and Auslander–Gorenstein properties for the graded rings associated to $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $.
When $k$ has characteristic $p$, we prove that in ‘most’ cases $\mathrm{H} $ and ${\mathrm{H} }^{\prime } $ have infinite global dimension. In particular, we deduce that the category of smooth $k$-representations of $\mathrm{G} = {\mathrm{PGL} }_{2} ({ \mathbb{Q} }_{p} )$ generated by their invariant vectors under the pro-$p$ Iwahori subgroup has infinite global dimension (at least if $k$ is algebraically closed).
Let $G$ be a finite group. A subgroup $H$ of $G$ is said to be $E$-supplemented in $G$ if there is a subgroup $T$ of $G$ such that $G= HT$ and $H\cap T\leq {H}_{eG} $, where ${H}_{eG} $ denotes the subgroup of $H$ generated by all those subgroups of $H$ which are $S$-quasinormally embedded in $G$. In this paper, some new characterisations of $p$-supersolubility of finite groups are given under the assumption that some primary subgroups are $E$-supplemented.
The so-called Burnside–Dixon–Schneider (BDS) method, currently used as the default method of computing character tables in GAP for groups which are not solvable, is often inefficient in dealing with groups with large centres. If $G$ is a finite group with centre $Z$ and $\lambda $ a linear character of $Z$, then we describe a method of computing the set $\mathrm{Irr} (G, \lambda )$ of irreducible characters $\chi $ of $G$ whose restriction ${\chi }_{Z} $ is a multiple of $\lambda $. This modification of the BDS method involves only $\vert \mathrm{Irr} (G, \lambda )\vert $ conjugacy classes of $G$ and so is relatively fast. A generalization of the method can be applied to computation of small sets of characters of groups with a solvable normal subgroup.
We study the mixing properties of progressions $(x, xg, x{g}^{2} )$, $(x, xg, x{g}^{2} , x{g}^{3} )$ of length three and four in a model class of finite nonabelian groups, namely the special linear groups ${\mathrm{SL} }_{d} (F)$ over a finite field $F$, with $d$ bounded. For length three progressions $(x, xg, x{g}^{2} )$, we establish a strong mixing property (with an error term that decays polynomially in the order $\vert F\vert $ of $F$), which among other things counts the number of such progressions in any given dense subset $A$ of ${\mathrm{SL} }_{d} (F)$, answering a question of Gowers for this class of groups. For length four progressions $(x, xg, x{g}^{2} , x{g}^{3} )$, we establish a partial result in the $d= 2$ case if the shift $g$ is restricted to be diagonalizable over $F$, although in this case we do not recover polynomial bounds in the error term. Our methods include the use of the Cauchy–Schwarz inequality, the abelian Fourier transform, the Lang–Weil bound for the number of points in an algebraic variety over a finite field, some algebraic geometry, and (in the case of length four progressions) the multidimensional Szemerédi theorem.
In the 2006 edition of the Kourovka Notebook, Berkovich poses the following problem (Problem 16.13): Let$p$be a prime and$P$be a finite$p$-group. Can$P$have every maximal subgroup special? We show that the structure of such groups is very restricted, but for all primes there are groups of arbitrarily large size with this property.
The idea that the cohomology of finite groups might be fruitfully approached via the cohomology of ambient semisimple algebraic groups was first shown to be viable in the papers [E. Cline, B. Parshall, and L. Scott, Cohomology of finite groups of Lie type, I, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 169–191] and [E. Cline, B. Parshall, L. Scott and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), 143–163]. The second paper introduced, through a limiting process, the notion of generic cohomology, as an intermediary between finite Chevalley group and algebraic group cohomology. The present paper shows that, for irreducible modules as coefficients, the limits can be eliminated in all but finitely many cases. These exceptional cases depend only on the root system and cohomological degree. In fact, we show that, for sufficiently large $r$, depending only on the root system and $m$, and not on the prime $p$ or the irreducible module $L$, there are isomorphisms ${\mathrm{H} }^{m} (G({p}^{r} ), L)\cong {\mathrm{H} }^{m} (G({p}^{r} ), {L}^{\prime } )\cong { \mathrm{H} }_{\mathrm{gen} }^{m} (G, {L}^{\prime } )\cong {\mathrm{H} }^{m} (G, {L}^{\prime } )$, where the subscript ‘gen’ refers to generic cohomology and ${L}^{\prime } $ is a constructibly determined irreducible ‘shift’ of the (arbitrary) irreducible module $L$ for the finite Chevalley group $G({p}^{r} )$. By a famous theorem of Steinberg, both $L$ and ${L}^{\prime } $ extend to irreducible modules for the ambient algebraic group $G$ with ${p}^{r} $-restricted highest weights. This leads to the notion of a module or weight being ‘shifted $m$-generic’, and thus to the title of this paper. Our approach is based on questions raised by the third author in [D. I. Stewart, The second cohomology of simple${\mathrm{SL} }_{3} $-modules, Comm. Algebra 40 (2012), 4702–4716], which we answer here in the cohomology cases. We obtain many additional results, often with formulations in the more general context of ${ \mathrm{Ext} }_{G({p}^{r} )}^{m} $ with irreducible coefficients.
All groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc.28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.
Let $G$ be a finite group. We show that the order of the subgroup generated by coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators) is bounded in terms of the size of the set of coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators). This is in parallel with the classical theorem due to Turner-Smith that the words ${\gamma }_{k} $ and ${\delta }_{k} $ are concise.
We prove that if a finite group G acts smoothly on a manifold M such that all the isotropy subgroups are abelian groups with rank ≤ k, then G acts freely and smoothly on M × × … × for some positive integers n1, …, nk. We construct these actions using a recursive method, introduced in an earlier paper, that involves abstract fusion systems on finite groups. As another application of this method, we prove that every finite solvable group acts freely and smoothly on some product of spheres, with trivial action on homology.
Let Ω be a finite set and let G be a permutation group acting on it. A subset H of G is called t-intersecting if any two elements in H agree on at least t points. Let SDn and SBn be the classical Coxeter group of type Dn and type Bn, respectively. We show that the maximum-sized (2t)-intersecting families in SDn and SBn are precisely cosets of stabilizers of t points in [n] ≔ {1, 2, …, n}, provided n is sufficiently large depending on t.
A long-standing conjecture asserts that every finite nonabelian $p$-group has a noninner automorphism of order $p$. In this paper the verification of the conjecture is reduced to the case of $p$-groups $G$ satisfying ${ Z}_{2}^{\star } (G)\leq {C}_{G} ({ Z}_{2}^{\star } (G))= \Phi (G)$, where ${ Z}_{2}^{\star } (G)$ is the preimage of ${\Omega }_{1} ({Z}_{2} (G)/ Z(G))$ in $G$. This improves Deaconescu and Silberberg’s reduction of the conjecture: if ${C}_{G} (Z(\Phi (G)))\not = \Phi (G)$, then $G$ has a noninner automorphism of order $p$ leaving the Frattini subgroup of $G$ elementwise fixed [‘Noninner automorphisms of order $p$ of finite $p$-groups’, J. Algebra250 (2002), 283–287].
We show that a finite loop, whose inner mapping group is the direct product of a dihedral $2$-group and a nonabelian group of order $pq$ ($p$ and $q$ are distinct odd prime numbers), is solvable.
Let $G$ denote a finite group and $\mathrm{cd} (G)$ the set of irreducible character degrees of $G$. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $\mathrm{cd} (G)= \mathrm{cd} (H)$, then $G\cong H\times A$, where $A$ is an abelian group. He verified the conjecture for many of the sporadic simple groups and we complete its verification for the remainder.
We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar partition λ as the union of two multisets, one consisting of the bar lengths in its d-core partition cd(λ) and the other consisting of modified bar lengths in its d-quotient partition. In particular, we obtain that the multiset of bar lengths in cd(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a relative bar formula for the degrees of spin characters of the Schur extensions of . The proof involves a recent similar result for partitions, proved by Bessenrodt and the authors.
The $p$-length of a finite $p$-soluble group is an important invariant parameter. The well-known Hall–Higman $p$-length theorem states that the $p$-length of a $p$-soluble group is bounded above by the nilpotent class of its Sylow $p$-subgroups. In this paper, we improve this result by giving a better estimation on the $p$-length of a $p$-soluble group in terms of other invariant parameters of its Sylow $p$-subgroups.
The commutativity degree of a finite group is the probability that two randomly chosen group elements commute. The object of this paper is to compute the commutativity degree of a class of finite groups obtained by semidirect product of two finite abelian groups. As a byproduct of our result, we provide an affirmative answer to an open question posed by Lescot.
Let $G$ be a finite $p$-solvable group and let ${G}^{\ast } $ be the set of elements of primary and biprimary orders of $G$. Suppose that the conjugacy class sizes of ${G}^{\ast } $ are $\{ 1, {p}^{a} , n, {p}^{a} n\} $, where the prime $p$ divides the positive integer $n$ and ${p}^{a} $ does not divide $n$. Then $G$ is, up to central factors, a $\{ p, q\} $-group with $p$ and $q$ two distinct primes. In particular, $G$ is solvable.