To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a diagrammatic presentation for the category of Soergel bimodules for the dihedral group $W$. The (two-colored) Temperley–Lieb category is embedded inside this category as the degree $0$ morphisms between color-alternating objects. The indecomposable Soergel bimodules are the images of Jones–Wenzl projectors. When $W$ is infinite, the parameter $q$ of the Temperley–Lieb algebra may be generic, yielding a quantum version of the geometric Satake equivalence for $\mathfrak{sl}_{2}$. When $W$ is finite, $q$ must be specialized to an appropriate root of unity, and the negligible Jones–Wenzl projector yields the Soergel bimodule for the longest element of $W$.
A subset $X$ of a finite group $G$ is a set of pairwise noncommuting elements if $xy\neq yx$ for all $x\neq y\in X$. If $|X|\geq |Y|$ for any other subset $Y$ of pairwise noncommuting elements, then $X$ is called a maximal subset of pairwise noncommuting elements and the size of such a set is denoted by ${\it\omega}(G)$. In a recent article by Azad et al. [‘Maximal subsets of pairwise noncommuting elements of some finite $p$-groups’, Bull. Iran. Math. Soc.39(1) (2013), 187–192], the value of ${\it\omega}(G)$ is computed for certain $p$-groups $G$. In the present paper, our aim is to generalise these results and find ${\it\omega}(G)$ for some more $p$-groups of interest.
Let $G$ be a finite group and $p$ a prime. We say that a $p$-regular element $g$ of $G$ is $p$-nonvanishing if no irreducible $p$-Brauer character of $G$ takes the value $0$ on $g$. The main result of this paper shows that if $G$ is solvable and $g\in G$ is a $p$-regular element which is $p$-nonvanishing, then $g$ lies in a normal subgroup of $G$ whose $p$-length and $p^{\prime }$-length are both at most 2 (with possible exceptions for $p\leq 7$), the bound being best possible. This result is obtained through the analysis of one particular orbit condition in linear actions of solvable groups on finite vector spaces, and it generalizes (for $p>7$) some results in Dolfi and Pacifici [‘Zeros of Brauer characters and linear actions of finite groups’, J. Algebra340 (2011), 104–113].
We construct a subgroup Hd of the iterated wreath product Gd of d copies of the cyclic group of order p with the property that the derived length and the smallest cardinality of a generating set of Hd are equal to d while no proper subgroup of Hd has derived length equal to d. It turns out that the two groups Hd and Gd are the extreme cases of a more general construction that produces a chain Hd=K1<···< Kp−1=Gd of subgroups sharing a common recursive structure. For i ∈ {1,. . .,p−1}, the subgroup Ki has nilpotency class (i+1)d−1.
A subset $X$ of a group $G$ is a set of pairwise noncommuting elements if $ab\neq ba$ for any two distinct elements $a$ and $b$ in $X$. If $|X|\geq |Y|$ for any other set of pairwise noncommuting elements $Y$ in $G$, then $X$ is called a maximal subset of pairwise noncommuting elements and the cardinality of such a subset (if it exists) is denoted by ${\it\omega}(G)$. In this paper, among other things, we prove that, for each positive integer $n$, there are only finitely many groups $G$, up to isoclinism, with ${\it\omega}(G)=n$, and we obtain similar results for groups with exactly $n$ centralisers.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
For all prime powers $q$ we restrict the unipotent characters of the special orthogonal groups $\text{SO}_{5}(q)$ and $\text{SO}_{7}(q)$ to a maximal parabolic subgroup. We determine all irreducible constituents of these restrictions for $\text{SO}_{5}(q)$ and a large part of the irreducible constituents for $\text{SO}_{7}(q)$.
We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise.
In this paper we analyse the structure of a finite group of minimal order among the finite non-supersoluble groups possessing a triple factorization by supersoluble subgroups of pairwise relatively prime indices. As an application we obtain some sufficient conditions for a triple factorized group by supersoluble subgroups of pairwise relatively prime indices to be supersoluble. Many results appear as consequences of our analysis.
From the mid-1990s onwards, the main focus of L. G. Kovács’ research was on Lie powers. This brief survey presents some of the key results on Lie powers obtained by Kovács and his collaborators, and discusses some subsequent developments and applications of this work.
Let $R$ be a large field of characteristic $p$. We classify the supersingular simple modules of the pro-$p$-Iwahori Hecke $R$-algebra ${\mathcal{H}}$ of a general reductive $p$-adic group $G$. We show that the functor of pro-$p$-Iwahori invariants behaves well when restricted to the representations compactly induced from an irreducible smooth $R$-representation $\unicode[STIX]{x1D70C}$ of a special parahoric subgroup $K$ of $G$. We give an almost-isomorphism between the center of ${\mathcal{H}}$ and the center of the spherical Hecke algebra ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$, and a Satake-type isomorphism for ${\mathcal{H}}(G,K,\unicode[STIX]{x1D70C})$. This generalizes results obtained by Ollivier for $G$ split and $K$ hyperspecial to $G$ general and $K$ special.
Let $\mathbb{A}=(A,+)$ be a (possibly non-commutative) semigroup. For $Z\subseteq A$, we define $Z^{\times }:=Z\cap \mathbb{A}^{\times }$, where $\mathbb{A}^{\times }$ is the set of the units of $\mathbb{A}$ and
The paper investigates some properties of ${\it\gamma}(\cdot )$ and shows the following extension of the Cauchy–Davenport theorem: if $\mathbb{A}$ is cancellative and $X,Y\subseteq A$, then
This implies a generalization of Kemperman’s inequality for torsion-free groups and strengthens another extension of the Cauchy–Davenport theorem, where $\mathbb{A}$ is a group and ${\it\gamma}(X+Y)$ in the above is replaced by the infimum of $|S|$ as $S$ ranges over the non-trivial subgroups of $\mathbb{A}$ (Hamidoune–Károlyi theorem).
Podoski and Szegedy [‘On finite groups whose derived subgroup has bounded rank’, Israel J. Math.178 (2010), 51–60] proved that for a finite group $G$ with rank $r$, the inequality $[G:Z_{2}(G)]\leq |G^{\prime }|^{2r}$ holds. In this paper we omit the finiteness condition on $G$ and show that groups with finite derived subgroup satisfy the same inequality. We also construct an $n$-capable group which is not $(n+1)$-capable for every $n\in \mathbf{N}$.
For each prime $p$ we construct a family $\{G_{i}\}$ of finite $p$-groups such that $|\text{Aut}(G_{i})|/|G_{i}|$ tends to zero as $i$ tends to infinity. This disproves a well-known conjecture that $|G|$ divides $|\text{Aut}(G)|$ for every nonabelian finite $p$-group $G$.
We present a computer algebra package based onMagma for performing computations in rational Cherednik algebras with arbitrary parameters and in Verma modules for restricted rational Cherednik algebras. Part of this package is a new general Las Vegas algorithm for computing the head and the constituents of a module with simple head in characteristic zero, which we develop here theoretically. This algorithm is very successful when applied to Verma modules for restricted rational Cherednik algebras and it allows us to answer several questions posed by Gordon in some specific cases. We can determine the decomposition matrices of the Verma modules, the graded $G$-module structure of the simple modules, and the Calogero–Moser families of the generic restricted rational Cherednik algebra for around half of the exceptional complex reflection groups. In this way we can also confirm Martino’s conjecture for several exceptional complex reflection groups.
Let $w_{1}$ and $w_{2}$ be nontrivial words in free groups $F_{n_{1}}$ and $F_{n_{2}}$, respectively. We prove that, for all sufficiently large finite nonabelian simple groups $G$, there exist subsets $C_{1}\subseteq w_{1}(G)$ and $C_{2}\subseteq w_{2}(G)$ such that $|C_{i}|=O(|G|^{1/2}\log ^{1/2}|G|)$ and $C_{1}C_{2}=G$. In particular, if $w$ is any nontrivial word and $G$ is a sufficiently large finite nonabelian simple group, then $w(G)$ contains a thin base of order $2$. This is a nonabelian analog of a result of Van Vu [‘On a refinement of Waring’s problem’, Duke Math. J. 105(1) (2000), 107–134.] for the classical Waring problem. Further results concerning thin bases of $G$ of order $2$ are established for any finite group and for any compact Lie group $G$.
Let $K$ be a number field. For any system of semisimple mod $\ell$ Galois representations $\{{\it\phi}_{\ell }:\text{Gal}(\bar{\mathbb{Q}}/K)\rightarrow \text{GL}_{N}(\mathbb{F}_{\ell })\}_{\ell }$ arising from étale cohomology (Definition 1), there exists a finite normal extension $L$ of $K$ such that if we denote ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/K))$ and ${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/L))$ by $\bar{{\rm\Gamma}}_{\ell }$ and $\bar{{\it\gamma}}_{\ell }$, respectively, for all $\ell$ and let $\bar{\mathbf{S}}_{\ell }$ be the $\mathbb{F}_{\ell }$-semisimple subgroup of $\text{GL}_{N,\mathbb{F}_{\ell }}$ associated to $\bar{{\it\gamma}}_{\ell }$ (or $\bar{{\rm\Gamma}}_{\ell }$) by Nori’s theory [On subgroups of$\text{GL}_{n}(\mathbb{F}_{p})$, Invent. Math. 88 (1987), 257–275] for sufficiently large $\ell$, then the following statements hold for all sufficiently large $\ell$.
A(i) The formal character of $\bar{\mathbf{S}}_{\ell }{\hookrightarrow}\text{GL}_{N,\mathbb{F}_{\ell }}$ (Definition 1) is independent of $\ell$ and equal to the formal character of $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}{\hookrightarrow}\text{GL}_{N,\mathbb{Q}_{\ell }}$, where $(\mathbf{G}_{\ell }^{\circ })^{\text{der}}$ is the derived group of the identity component of $\mathbf{G}_{\ell }$, the monodromy group of the corresponding semi-simplified $\ell$-adic Galois representation ${\rm\Phi}_{\ell }^{\text{ss}}$.
A(ii) The non-cyclic composition factors of $\bar{{\it\gamma}}_{\ell }$ and $\bar{\mathbf{S}}_{\ell }(\mathbb{F}_{\ell })$ are identical. Therefore, the composition factors of $\bar{{\it\gamma}}_{\ell }$ are finite simple groups of Lie type of characteristic $\ell$ and are cyclic groups.
B(i) The total $\ell$-rank $\text{rk}_{\ell }\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) is equal to the rank of $\bar{\mathbf{S}}_{\ell }$ and is therefore independent of $\ell$.
B(ii) The $A_{n}$-type $\ell$-rank $\text{rk}_{\ell }^{A_{n}}\bar{{\rm\Gamma}}_{\ell }$ of $\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) for $n\in \mathbb{N}\setminus \{1,2,3,4,5,7,8\}$ and the parity of $(\text{rk}_{\ell }^{A_{4}}\bar{{\rm\Gamma}}_{\ell })/4$ are independent of $\ell$.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.