We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subgroup X of a group G is said to be transitively normal if X is normal in any subgroup Y of G such that $X\leq Y$ and X is subnormal in Y. We investigate the structure of generalised soluble groups with dense transitively normal subgroups, that is, groups in which every nonempty open interval in their subgroup lattice contains a transitively normal subgroup. In particular, it will be proved that nonperiodic generalised soluble groups with dense transitively normal subgroups are abelian.
Let $G \leqslant \mathrm {Sym}(\Omega )$ be a finite transitive permutation group and recall that an element in G is a derangement if it has no fixed points on $\Omega $. Let $\Delta (G)$ be the set of derangements in G and define $\delta (G) = |\Delta (G)|/|G|$ and $\Delta (G)^2 = \{ xy \,:\, x,y \in \Delta (G)\}$. In recent years, there has been a focus on studying derangements in simple groups, leading to several remarkable results. For example, by combining a theorem of Fulman and Guralnick with recent work by Larsen, Shalev and Tiep, it follows that $\delta (G) \geqslant 0.016$ and $G = \Delta (G)^2$ for all sufficiently large simple transitive groups G. In this paper, we extend these results in several directions. For example, we prove that $\delta (G) \geqslant 89/325$ and $G = \Delta (G)^2$ for all finite simple primitive groups with soluble point stabilisers, without any order assumptions, and we show that the given lower bound on $\delta (G)$ is best possible. We also prove that every finite simple transitive group can be generated by two conjugate derangements, and we present several new results on derangements in arbitrary primitive permutation groups.
We study a family of Thompson-like groups built as rearrangement groups of fractals introduced by Belk and Forrest in 2019, each acting on a Ważewski dendrite. Each of these is a finitely generated group that is dense in the full group of homeomorphisms of the dendrite (studied by Monod and Duchesne in 2019) and has infinite-index finitely generated simple commutator subgroup, with a single possible exception. More properties are discussed, including finite subgroups, the conjugacy problem, invariable generation and existence of free subgroups. We discuss many possible generalisations, among which we find the Airplane rearrangement group $T_A$. Despite close connections with Thompson’s group F, dendrite rearrangement groups seem to share many features with Thompson’s group V.
An element of a group is called strongly reversible or strongly real if it can be expressed as a product of two involutions. We provide necessary and sufficient conditions for an element of $\mathrm{SL}(n,\mathbb{C})$ to be a product of two involutions. In particular, we classify the strongly reversible conjugacy classes in $\mathrm{SL}(n,\mathbb{C})$.
We show that the group $ \langle a,b,c,t \,:\, a^t=b,b^t=c,c^t=ca^{-1} \rangle$ is profinitely rigid amongst free-by-cyclic groups, providing the first example of a hyperbolic free-by-cyclic group with this property.
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
In a paper from 1980, Shelah constructed an uncountable group all of whose proper subgroups are countable. Assuming the continuum hypothesis, he constructed an uncountable group G that moreover admits an integer n satisfying that for every uncountable $X\subseteq G$, every element of G may be written as a group word of length n in the elements of X. The former is called a Jónsson group, and the latter is called a Shelah group.
In this paper, we construct a Shelah group on the grounds of $\textsf {{ZFC}}$ alone – that is, without assuming the continuum hypothesis. More generally, we identify a combinatorial condition (coming from the theories of negative square-bracket partition relations and strongly unbounded subadditive maps) sufficient for the construction of a Shelah group of size $\kappa $, and we prove that the condition holds true for all successors of regular cardinals (such as $\kappa =\aleph _1,\aleph _2,\aleph _3,\ldots $). This also yields the first consistent example of a Shelah group of size a limit cardinal.
We present a solution to the conjugacy problem in the group of outer automorphisms of $F_3$, a free group of rank 3. We distinguish according to several computable invariants, such as irreducibility, subgroups of polynomial growth and subgroups carrying the attracting lamination. We establish, by considerations on train tracks, that the conjugacy problem is decidable for the outer automorphisms of $F_3$ that preserve a given rank 2 free factor. Then we establish, by consideration on mapping tori, that it is decidable for outer automorphisms of $F_3$ whose maximal polynomial growth subgroups are cyclic. This covers all the cases left by the state of the art.
Let $G$ be a group. The notion of linear sofic approximations of $G$ over an arbitrary field $F$ was introduced and systematically studied by Arzhantseva and Păunescu [3]. Inspired by one of the results of [3], we introduce and study the invariant $\kappa _F(G)$ that captures the quality of linear sofic approximations of $G$ over $F$. In this work, we show that when $F$ has characteristic zero and $G$ is linear sofic over $F$, then $\kappa _F(G)$ takes values in the interval $[1/2,1]$ and $1/2$ cannot be replaced by any larger value. Further, we show that under the same conditions, $\kappa _F(G)=1$ when $G$ is torsion-free. These results answer a question posed by Arzhantseva and Păunescu [3] for fields of characteristic zero. One of the new ingredients of our proofs is an effective non-concentration estimates for random walks on finitely generated abelian groups, which may be of independent interest.
In this article, $\mathcal{F}_{S}(G)$ denotes the fusion category of G on a Sylow p-subgroup S of G where p denotes a prime. A subgroup K of G has normal complement in G if there is a normal subgroup T of G satisfying that G = KT and $T \cap K = 1$. We investigate the supersolvability of $\mathcal{F}_{S}(G)$ under the assumption that some subgroups of S are normal in G or have normal complement in G.
We prove that virtually free groups are precisely the hyperbolic groups admitting a language of geodesic words containing a unique representative for each group element with bounded triangles. Equivalently, these are exactly the hyperbolic groups for which the model for the Gromov boundary defined by Silva is well defined.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
An element of a group is called reversible if it is conjugate to its own inverse. Reversible elements are closely related to strongly reversible elements, which can be expressed as a product of two involutions. In this paper, we classify the reversible and strongly reversible elements in the quaternionic special linear group $ \mathrm {SL}(n,\mathbb {H})$ and quaternionic projective linear group $ \mathrm {PSL}(n,\mathbb {H})$. We prove that an element of $ \mathrm {SL}(n,\mathbb {H})$ (resp. $ \mathrm {PSL}(n,\mathbb {H})$) is reversible if and only if it is a product of two skew-involutions (resp. involutions).
The group of order-preserving automorphisms of a finitely generated Archimedean ordered group of rank $2$ is either infinite cyclic or trivial according as the ratio in $\mathbb {R}$ of the generators of the subgroup is or is not quadratic over $\mathbb {Q}.$ In the case of an Archimedean ordered group of rank $2$ that is not finitely generated, the group of order-preserving automorphisms is free abelian. Criteria determining the rank of this free abelian group are established.
Let $H\le F$ be two finitely generated free groups. Given $g\in F$, we study the ideal $\mathfrak I_g$ of equations for g with coefficients in H, i.e. the elements $w(x)\in H*\langle x\rangle$ such that $w(g)=1$ in F. The ideal $\mathfrak I_g$ is a normal subgroup of $H*\langle x\rangle$, and it’s possible to algorithmically compute a finite normal generating set for $\mathfrak I_g$; we give a description of one such algorithm, based on Stallings folding operations. We provide an algorithm to find an equation in w(x)\in$\mathfrak I_g$ with minimum degree, i.e. such that its cyclic reduction contains the minimum possible number of occurrences of x and x−1; this answers a question of A. Rosenmann and E. Ventura. More generally, we show how to algorithmically compute the set Dg of all integers d such that $\mathfrak I_g$ contains equations of degree d; we show that Dg coincides, up to a finite set, with either $\mathbb N$ or $2\mathbb N$. Finally, we provide examples to illustrate the techniques introduced in this paper. We discuss the case where ${\text{rank}}(H)=1$. We prove that both kinds of sets Dg can actually occur. We show that the equations of minimum possible degree aren’t in general enough to generate the whole ideal $\mathfrak I_g$ as a normal subgroup.
We show that when a finitely presented Bestvina–Brady group splits as an amalgamated product over a subgroup $H$, its defining graph contains an induced separating subgraph whose associated Bestvina–Brady group is contained in a conjugate of $H$.
Given a group G acting faithfully on a set S, we characterize precisely when the twisted Brin–Thompson group SVG is finitely presented. The answer is that SVG is finitely presented if and only if we have the following: G is finitely presented, the action of G on S has finitely many orbits of two-element subsets of S, and the stabilizer in G of any element of S is finitely generated. Since twisted Brin–Thompson groups are simple, a consequence is that any subgroup of a group admitting an action as above satisfies the Boone–Higman conjecture. In the course of proving this, we also establish a sufficient condition for a group acting cocompactly on a simply connected complex to be finitely presented, even if certain edge stabilizers are not finitely generated, which may be of independent interest.
To any free group automorphism, we associate a universal (cone of) limit tree(s) with three defining properties: first, the tree has a minimal isometric action of the free group with trivial arc stabilizers; second, there is a unique expanding dilation of the tree that represents the free group automorphism; and finally, the loxodromic elements are exactly the elements that weakly limit to dominating attracting laminations under forward iteration by the automorphism. So the action on the tree detects the automorphism’s dominating exponential dynamics.
As a corollary, our previously constructed limit pretree that detects the exponential dynamics is canonical. We also characterize all very small trees that admit an expanding homothety representing a given automorphism. In the appendix, we prove a variation of Feighn–Handel’s recognition theorem for atoroidal outer automorphisms.
For any prime p and S a p-group isomorphic to a Sylow p-subgroup of a rank $2$ simple group of Lie type in characteristic p, we determine all saturated fusion systems supported on S up to isomorphism.