We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An element g in a group G is called reversible if g is conjugate to g−1 in G. An element g in G is strongly reversible if g is conjugate to g−1 by an involution in G. The group of affine transformations of $\mathbb D^n$ may be identified with the semi-direct product $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $, where $\mathbb D:=\mathbb R, \mathbb C$ or $ \mathbb H $. This paper classifies reversible and strongly reversible elements in the affine group $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $.
We construct pairs of residually finite groups with isomorphic profinite completions such that one has non-vanishing and the other has vanishing real second bounded cohomology. The examples are lattices in different higher-rank simple Lie groups. Using Galois cohomology, we actually show that $\operatorname {SO}^0(n,2)$ for $n \ge 6$ and the exceptional groups $E_{6(-14)}$ and $E_{7(-25)}$ constitute the complete list of higher-rank Lie groups admitting such examples.
We generalise some known results for limit groups over free groups and residually free groups to limit groups over Droms RAAGs and residually Droms RAAGs, respectively. We show that limit groups over Droms RAAGs are free-by-(torsion-free nilpotent). We prove that if S is a full subdirect product of type $FP_s(\mathbb{Q})$ of limit groups over Droms RAAGs with trivial center, then the projection of S to the direct product of any s of the limit groups over Droms RAAGs has finite index. Moreover, we compute the growth of homology groups and the volume gradients for limit groups over Droms RAAGs in any dimension and for finitely presented residually Droms RAAGs of type $FP_m$ in dimensions up to m. In particular, this gives the values of the analytic $L^2$-Betti numbers of these groups in the respective dimensions.
We construct finitely generated torsion-free solvable groups G that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of G are virtually abelian. In particular all finitely generated metabelian subgroups of G are virtually abelian. The existence of such groups shows that there is no “torsion-free version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.
In this paper, we study intersection configurations – which describe the behaviour of multiple (finite) intersections of subgroups with respect to finite generability – in the realm of free and free times free-abelian (FTFA) groups. We say that a configuration is realizable in a group $G$ if there exist subgroups $H_1,\ldots, H_k \leqslant G$ realizing it. It is well known that free groups ${\mathbb {F}_{n}}$ satisfy the Howson property: the intersection of any two finitely generated subgroups is again finitely generated. We show that the Howson property is indeed the only obstruction for multiple intersection configurations to be realizable within nonabelian free groups. On the contrary, FTFA groups ${\mathbb {F}_{n}} \times \mathbb {Z}^m$ are well known to be non-Howson. We also study multiple intersections within FTFA groups, providing an algorithm to decide, given $k\geq 2$ finitely generated subgroups, whether their intersection is again finitely generated and, in the affirmative case, compute a ‘basis’ for it. We finally prove that any intersection configuration is realizable in an FTFA group ${\mathbb {F}_{n}} \times \mathbb {Z}^m$, for $n\geq 2$ and large enough $m$. As a consequence, we exhibit finitely presented groups where every intersection configuration is realizable.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
For a finite abelian group A, the Reidemeister number of an endomorphism φ is the same as the number of fixed points of φ, and the Reidemeister spectrum of A is completely determined by the Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian p-group P, we introduce a new number associated to an automorphism ψ of P that captures the number of fixed points of ψ and its (additive) multiples, we provide upper and lower bounds for that number, and we prove that every power of p between those bounds occurs as such a number.
A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfies $m(G) \leqslant a \cdot \delta (G)^b$, for $\delta (G) = \sum _{p \text { prime}} m(G_p)$, where $G_p$ is a Sylow p-subgroup of G. To do this, we first bound $m(G)$ for all almost simple groups of Lie type (until now, no nontrivial bounds were known except for groups of rank $1$ or $2$). In particular, we prove that there exist $a,b> 0$ such that any finite simple group G of Lie type of rank r over the field $\mathbb {F}_{p^f}$ satisfies $r + \omega (f) \leqslant m(G) \leqslant a(r + \omega (f))^b$, where $\omega (f)$ denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and Liebeck that there exist $a,b> 0$ such that a minimal base for a faithful primitive action of an almost simple group of Lie type of rank r over $\mathbb {F}_{p^f}$ has size at most $ar^b + \omega (f)$.
Let $\Sigma $ be a closed surface other than the sphere, the torus, the projective plane or the Klein bottle. We construct a continuum of probability measure preserving ergodic minimal profinite actions for the fundamental group of $\Sigma $ that are topologically free but not essentially free, a property that we call allostery. Moreover, the invariant random subgroups we obtain are pairwise distincts.
We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$. We provide several examples and additional characterisations; notably we show that $w$ is self-divisible if and only if $\equiv _w$ coincides with the strong congruence relation $\mathrel {\equiv ^{\mathrm {s}}_{w}}$, if and only if the quotient $(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$ is a profinite group. We also construct an ultrafilter $w$ such that $\equiv _w$ fails to be symmetric, and describe the interaction between the aforementioned quotient and the profinite completion $\hat {{\mathbb Z}}$ of the integers.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
A left orderable monster is a finitely generated left orderable group all of whose fixed point-free actions on the line are proximal: the action is semiconjugate to a minimal action so that for every bounded interval I and open interval J, there is a group element that sends I into J. In his 2018 ICM address, Navas asked about the existence of left orderable monsters. By now there are several examples, all of which are finitely generated but not finitely presentable. We provide the first examples of left orderable monsters that are finitely presentable, and even of type $F_\infty $. These groups satisfy several additional properties separating them from the previous examples: they are not simple, they act minimally on the circle, and they have an infinite-dimensional space of homogeneous quasimorphisms. Our construction is flexible enough that it produces infinitely many isomorphism classes of finitely presented (and type $F_{\infty }$) left orderable monsters.
Let G be a group that is either virtually soluble or virtually free, and let ω be a weight on G. We prove that if G is infinite, then there is some maximal left ideal of finite codimension in the Beurling algebra $\ell^1(G, \omega)$, which fails to be (algebraically) finitely generated. This implies that a conjecture of Dales and Żelazko holds for these Banach algebras. We then go on to give examples of weighted groups for which this property fails in a strong way. For instance, we describe a Beurling algebra on an infinite group in which every closed left ideal of finite codimension is finitely generated and which has many such ideals in the sense of being residually finite dimensional. These examples seem to be hard cases for proving Dales and Żelazko’s conjecture.
A subgroup H of a group G is said to be pronormal in G if each of its conjugates $H^g$ in G is already conjugate to it in the subgroup $\langle H,H^g\rangle $. The aim of this paper is to classify those (locally) finite simple groups which have only nilpotent or pronormal subgroups.
We construct finitely generated groups of small period growth, i.e. groups where the maximum order of an element of word length n grows very slowly in n. This answers a question of Bradford related to the lawlessness growth of groups and is connected to an approximative version of the restricted Burnside problem.
We look at constructions of aperiodic subshifts of finite type (SFTs) on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on a structural theorem by Whyte and on two constructions of strongly aperiodic SFTs on $\mathbb {F}_n\times \mathbb {Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb {Z}^2$ inside an SFT on $\mathbb {F}_n\times \mathbb {Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$. In the case of $\mathbb {F}_n\times \mathbb {Z}$, the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS groups.
We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of $F_2$ depending on a subset $S$ of positive integers. Varying $S$ yields continuously many groups up to quasi-isometry.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
Let G be a Baumslag–Solitar group. We calculate the intersection $\gamma_{\omega}(G)$ of all terms of the lower central series of G. Using this, we show that $[\gamma_{\omega}(G),G]=\gamma_{\omega}(G)$, thus answering a question of Bardakov and Neschadim [1]. For any $c \in \mathbb{N}$, with $c \geq 2$, we show, by using Lie algebra methods, that the quotient group $\gamma_{c}(G)/\gamma_{c+1}(G)$ of the lower central series of G is finite.
We study the behavior of the co-spectral radius of a subgroup H of a discrete group $\Gamma $ under taking intersections. Our main result is that the co-spectral radius of an invariant random subgroup does not drop upon intersecting with a deterministic co-amenable subgroup. As an application, we find that the intersection of independent co-amenable invariant random subgroups is co-amenable.