We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
Inspired by the phase transition results for non-singular Gaussian actions introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli actions. For generalized Bernoulli actions arising from groups acting on trees, we are able to give a very precise description of their ergodic-theoretical properties in terms of the Poincaré exponent of the group.
A generating set S for a group G is independent if the subgroup generated by $S\setminus \{s\}$ is properly contained in G for all $s \in S.$ We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
Let G be a simple algebraic group of adjoint type over an algebraically closed field k of bad characteristic. We show that its sheets of conjugacy classes are parametrized by G-conjugacy classes of pairs $(M,{\mathcal O})$ where M is the identity component of the centralizer of a semisimple element in G and ${\mathcal O}$ is a rigid unipotent conjugacy class in M, in analogy with the good characteristic case.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
Let D be a division ring and N be a subnormal subgroup of the multiplicative group $D^*$. We show that if N contains a nonabelian solvable subgroup, then N contains a nonabelian free subgroup.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
The higher-dimensional Thompson groups $nV$, for $n \geqslant 2$, were introduced by Brin [‘Presentations of higher dimensional Thompson groups’, J. Algebra284 (2005), 520–558]. We provide new presentations for each of these infinite simple groups. The first is an infinite presentation, analogous to the Coxeter presentation for the finite symmetric group, with generating set equal to the set of transpositions in $nV$ and reflecting the self-similar structure of n-dimensional Cantor space. We then exploit this infinite presentation to produce further finite presentations that are considerably smaller than those previously known.
The central kernel$K(G)$ of a group G is the (characteristic) subgroup consisting of all elements $x\in G$ such that $x^{\gamma }=x$ for every central automorphism $\gamma $ of G. We prove that if G is a finite-by-nilpotent group whose central kernel has finite index, then the full automorphism group $Aut(G)$ of G is finite. Some applications of this result are given.
If G is a group with subgroup H and m, k are two fixed nonnegative integers, H is called an
$(m,k)$
-subnormal subgroup of G if it has index at most m in a subnormal subgroup of G of defect less than or equal to k. We study the behaviour of uncountable groups of cardinality
$\aleph $
where all subgroups of cardinality
$\aleph $
are
$(m,k)$
-subnormal.
We extend the Burger–Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of Burger–Mozes universal groups acting on the regular tree $T_{d}$ of degree $d\in \mathbb {N}_{\ge 3}$. Three applications are given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of $\operatorname {\mathrm {Aut}}(T_{d})$ may feature in terms of the group’s local action. In doing so, we explicitly construct closed, nondiscrete, compactly generated subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ with nontrivial quasicentre, and see that the Burger–Mozes theory does not extend further to the transitive case. We then characterize the $(P_{k})$-closures of locally transitive subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ containing an involutive inversion, and thereby partially answer two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions on finite subtrees’, J. Group Theory18(2) (2015), 235–261]. Finally, we offer a new view on the Weiss conjecture.
We state a sufficient condition for a fusion system to be saturated. This is then used to investigate localities with kernels: that is, localities that are (in a particular way) extensions of groups by localities. As an application of these results, we define and study certain products in fusion systems and localities, thus giving a new method to construct saturated subsystems of fusion systems.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed.
This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author’s thesis.
We investigate which higher rank simple Lie groups admit profinitely but not abstractly commensurable lattices. We show that no such examples exist for the complex forms of type
$E_8$
,
$F_4$
, and
$G_2$
. In contrast, there are arbitrarily many such examples in all other higher rank Lie groups, except possibly
$\textrm{SL}_{2n+1}(\mathbb{R})$
,
$\textrm{SL}_{2n+1}(\mathbb{C})$
,
$\textrm{SL}_n(\mathbb{H})$
, or groups of type
$E_6$
.
We obtain conditions of uniform continuity for endomorphisms of free-abelian times free groups for the product metric defined by taking the prefix metric in each component and establish an equivalence between uniform continuity for this metric and the preservation of a coarse-median, a concept recently introduced by Fioravanti. Considering the extension of an endomorphism to the completion, we count the number of orbits for the action of the subgroup of fixed points (respectively periodic) points on the set of infinite fixed (respectively periodic) points. Finally, we study the dynamics of infinite points: for automorphisms and some endomorphisms, defined in a precise way, fitting a classification given by Delgado and Ventura, we prove that every infinite point is either periodic or wandering, which implies that the dynamics is asymptotically periodic.
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups. We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are conjugate.
A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a group G is permutably embedded in G if
$\langle Q,g\rangle $
is quasihamiltonian for each element g of G. It is proved here that if a group G contains a permutably embedded normal subgroup Q such that
$G/Q$
is Černikov, then G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov normal subgroup N such that
$G/N$
is quasihamiltonian. This result should be compared with theorems of Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and its commutator subgroup is Černikov.