To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce self-divisible ultrafilters, which we prove to be precisely those $w$ such that the weak congruence relation $\equiv _w$ introduced by Šobot is an equivalence relation on $\beta {\mathbb Z}$. We provide several examples and additional characterisations; notably we show that $w$ is self-divisible if and only if $\equiv _w$ coincides with the strong congruence relation $\mathrel {\equiv ^{\mathrm {s}}_{w}}$, if and only if the quotient $(\beta {\mathbb Z},\oplus )/\mathord {\mathrel {\equiv ^{\mathrm {s}}_{w}}}$ is a profinite group. We also construct an ultrafilter $w$ such that $\equiv _w$ fails to be symmetric, and describe the interaction between the aforementioned quotient and the profinite completion $\hat {{\mathbb Z}}$ of the integers.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
A left orderable monster is a finitely generated left orderable group all of whose fixed point-free actions on the line are proximal: the action is semiconjugate to a minimal action so that for every bounded interval I and open interval J, there is a group element that sends I into J. In his 2018 ICM address, Navas asked about the existence of left orderable monsters. By now there are several examples, all of which are finitely generated but not finitely presentable. We provide the first examples of left orderable monsters that are finitely presentable, and even of type $F_\infty $. These groups satisfy several additional properties separating them from the previous examples: they are not simple, they act minimally on the circle, and they have an infinite-dimensional space of homogeneous quasimorphisms. Our construction is flexible enough that it produces infinitely many isomorphism classes of finitely presented (and type $F_{\infty }$) left orderable monsters.
Let G be a group that is either virtually soluble or virtually free, and let ω be a weight on G. We prove that if G is infinite, then there is some maximal left ideal of finite codimension in the Beurling algebra $\ell^1(G, \omega)$, which fails to be (algebraically) finitely generated. This implies that a conjecture of Dales and Żelazko holds for these Banach algebras. We then go on to give examples of weighted groups for which this property fails in a strong way. For instance, we describe a Beurling algebra on an infinite group in which every closed left ideal of finite codimension is finitely generated and which has many such ideals in the sense of being residually finite dimensional. These examples seem to be hard cases for proving Dales and Żelazko’s conjecture.
A subgroup H of a group G is said to be pronormal in G if each of its conjugates $H^g$ in G is already conjugate to it in the subgroup $\langle H,H^g\rangle $. The aim of this paper is to classify those (locally) finite simple groups which have only nilpotent or pronormal subgroups.
We construct finitely generated groups of small period growth, i.e. groups where the maximum order of an element of word length n grows very slowly in n. This answers a question of Bradford related to the lawlessness growth of groups and is connected to an approximative version of the restricted Burnside problem.
We look at constructions of aperiodic subshifts of finite type (SFTs) on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on a structural theorem by Whyte and on two constructions of strongly aperiodic SFTs on $\mathbb {F}_n\times \mathbb {Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb {Z}^2$ inside an SFT on $\mathbb {F}_n\times \mathbb {Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$. In the case of $\mathbb {F}_n\times \mathbb {Z}$, the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS groups.
We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of $F_2$ depending on a subset $S$ of positive integers. Varying $S$ yields continuously many groups up to quasi-isometry.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
Let G be a Baumslag–Solitar group. We calculate the intersection $\gamma_{\omega}(G)$ of all terms of the lower central series of G. Using this, we show that $[\gamma_{\omega}(G),G]=\gamma_{\omega}(G)$, thus answering a question of Bardakov and Neschadim [1]. For any $c \in \mathbb{N}$, with $c \geq 2$, we show, by using Lie algebra methods, that the quotient group $\gamma_{c}(G)/\gamma_{c+1}(G)$ of the lower central series of G is finite.
We study the behavior of the co-spectral radius of a subgroup H of a discrete group $\Gamma $ under taking intersections. Our main result is that the co-spectral radius of an invariant random subgroup does not drop upon intersecting with a deterministic co-amenable subgroup. As an application, we find that the intersection of independent co-amenable invariant random subgroups is co-amenable.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
Inspired by the phase transition results for non-singular Gaussian actions introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli actions. For generalized Bernoulli actions arising from groups acting on trees, we are able to give a very precise description of their ergodic-theoretical properties in terms of the Poincaré exponent of the group.
A generating set S for a group G is independent if the subgroup generated by $S\setminus \{s\}$ is properly contained in G for all $s \in S.$ We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
Let G be a simple algebraic group of adjoint type over an algebraically closed field k of bad characteristic. We show that its sheets of conjugacy classes are parametrized by G-conjugacy classes of pairs $(M,{\mathcal O})$ where M is the identity component of the centralizer of a semisimple element in G and ${\mathcal O}$ is a rigid unipotent conjugacy class in M, in analogy with the good characteristic case.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
Let D be a division ring and N be a subnormal subgroup of the multiplicative group $D^*$. We show that if N contains a nonabelian solvable subgroup, then N contains a nonabelian free subgroup.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.