To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and $\dim G=\dim V$. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
Let G be a simple complex algebraic group, and let $K \subset G$ be a reductive subgroup such that the coordinate ring of $G/K$ is a multiplicity-free G-module. We consider the G-algebra structure of $\mathbb C[G/K]$ and study the decomposition into irreducible summands of the product of irreducible G-submodules in $\mathbb C[G/K]$. When the spherical roots of $G/K$ generate a root system of type $\mathsf A$, we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of $G/K$ is a direct sum of subsystems of rank 1.
Let $F$ be a non-archimedean local field of residual characteristic $p \neq 2$. Let $G$ be a (connected) reductive group over $F$ that splits over a tamely ramified field extension of $F$. We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.
We fix an error on a $3$-cocycle in the original version of the paper ‘Endoscopy for Hecke categories, character sheaves and representations’. We give the corrected statements of the main results.
We prove that the structure group of any Albert algebra over an arbitrary field is R-trivial. This implies the Tits–Weiss conjecture for Albert algebras and the Kneser–Tits conjecture for isotropic groups of type $\mathrm {E}_{7,1}^{78}, \mathrm {E}_{8,2}^{78}$. As a further corollary, we show that some standard conjectures on the groups of R-equivalence classes in algebraic groups and the norm principle are true for strongly inner forms of type $^1\mathrm {E}_6$.
We observe a fundamental relationship between Steenrod operations and the Artin–Schreier morphism. We use Steenrod's construction, together with some new geometry related to the affine Grassmannian, to prove that the quantum Coulomb branch is a Frobenius-constant quantization. We also demonstrate the corresponding result for the $K$-theoretic version of the quantum Coulomb branch. At the end of the paper, we investigate what our ideas produce on the categorical level. We find that they yield, after a little fiddling, a construction which corresponds, under the geometric Satake equivalence, to the Frobenius twist functor for representations of the Langlands dual group. We also describe the unfiddled answer, conditional on a conjectural ‘modular derived Satake’, and, though it is more complicated to state, it is in our opinion just as neat and even more compelling.
For a Coxeter system and a representation $V$ of this Coxeter system, Soergel defined a category which is now called the category of Soergel bimodules and proved that this gives a categorification of the Hecke algebra when $V$ is reflection faithful. Elias and Williamson defined another category when $V$ is not reflection faithful and proved that this category is equivalent to the category of Soergel bimodules when $V$ is reflection faithful. Moreover, they proved the categorification theorem for their category with fewer assumptions on $V$. In this paper, we give a bimodule description of the Elias–Williamson category and re-prove the categorification theorem.
We show that the Tits index $E_{8,1}^{133}$ cannot be obtained by means of the Tits construction over a field with no odd degree extensions. The proof uses a general method coming from the theory of symmetric spaces. We construct two cohomological invariants, in degrees $6$ and $8$, of the Tits construction and the more symmetric Allison–Faulkner construction of Lie algebras of type $E_8$ and show that these invariants can be used to detect the isotropy rank.
In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum $\mathfrak {gl}_n$ via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ of the loop algebra $\widehat {\mathfrak {gl}}_{m|n}$ of ${\mathfrak {gl}}_{m|n}$ with those of affine symmetric groups ${\widehat {{\mathfrak S}}_{r}}$. Then, we give a BLM type realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ via affine Schur superalgebras.
The first application of the realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ is to determine the action of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ on tensor spaces of the natural representation of $\widehat {\mathfrak {gl}}_{m|n}$. These results in epimorphisms from $\;{\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ to affine Schur superalgebras so that the bridging relation between representations of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ and ${\widehat {{\mathfrak S}}_{r}}$ is established. As a second application, we construct a Kostant type $\mathbb Z$-form for ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $-conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$. In this paper, for any given $\sigma $-conjugacy class $[b]$, we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$.
Lusztig’s algorithm of computing generalized Green functions of reductive groups involves an ambiguity on certain scalars. In this paper, for reductive groups of classical type with arbitrary characteristic, we determine those scalars explicitly, and eliminate the ambiguity. Our results imply that all the generalized Green functions of classical type are computable.
We provide a microlocal necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs.
Let ${\mathbf {G}}$ be a complex algebraic reductive group and ${\mathbf {H}}\subset {\mathbf {G}}$ be a spherical algebraic subgroup. Let ${\mathfrak {g}},{\mathfrak {h}}$ denote the Lie algebras of ${\mathbf {G}}$ and ${\mathbf {H}}$, and let ${\mathfrak {h}}^{\bot }$ denote the orthogonal complement to ${\mathfrak {h}}$ in ${\mathfrak {g}}^*$. A ${\mathfrak {g}}$-module is called ${\mathfrak {h}}$-distinguished if it admits a nonzero ${\mathfrak {h}}$-invariant functional. We show that the maximal ${\mathbf {G}}$-orbit in the annihilator variety of any irreducible ${\mathfrak {h}}$-distinguished ${\mathfrak {g}}$-module intersects ${\mathfrak {h}}^{\bot }$. This generalises a result of Vogan [Vog91].
We apply this to Casselman–Wallach representations of real reductive groups to obtain information on branching problems, translation functors and Jacquet modules. Further, we prove in many cases that – as suggested by [Pra19, Question 1] – when H is a symmetric subgroup of a real reductive group G, the existence of a tempered H-distinguished representation of G implies the existence of a generic H-distinguished representation of G.
Many of the models studied in the theory of automorphic forms involve an additive character on the unipotent radical of the subgroup $\bf H$, and we have devised a twisted version of our theorem that yields necessary conditions for the existence of those mixed models. Our method of proof here is inspired by the theory of modules over W-algebras. As an application of our theorem we derive necessary conditions for the existence of Rankin–Selberg, Bessel, Klyachko and Shalika models. Our results are compatible with the recent Gan–Gross–Prasad conjectures for nongeneric representations [GGP20].
Finally, we provide more general results that ease the sphericity assumption on the subgroups, and apply them to local theta correspondence in type II and to degenerate Whittaker models.
We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field ${\mathbb K}$ of characteristic $\neq 2$ from scratch. We show that the formal model of a semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a $\mathbb {Z}$-model and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic. This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their limits proved in [K, Math. Ann. 371 no.2 (2018)]) when $\mathsf {char}\, {\mathbb K} =0$ or $\gg 0$, and the higher-cohomology vanishing of their nef line bundles in arbitrary characteristic $\neq 2$. Some particular cases of these results play crucial roles in our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between affine and quantum K-groups of a flag manifold.
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the $\ell $-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie $\ell $-adique de ces tours.
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
Let G be a connected reductive group over a p-adic number field F. We propose and study the notions of G-$\varphi $-modules and G-$(\varphi ,\nabla )$-modules over the Robba ring, which are exact faithful F-linear tensor functors from the category of G-representations on finite-dimensional F-vector spaces to the categories of $\varphi $-modules and $(\varphi ,\nabla )$-modules over the Robba ring, respectively, commuting with the respective fiber functors. We study Kedlaya’s slope filtration theorem in this context, and show that G-$(\varphi ,\nabla )$-modules over the Robba ring are “G-quasi-unipotent,” which is a generalization of the p-adic local monodromy theorem proved independently by Y. André, K. S. Kedlaya, and Z. Mebkhout.
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
For a connected reductive group G over a finite field, we study automorphic vector bundles on the stack of G-zips. In particular, we give a formula in the general case for the space of global sections of an automorphic vector bundle in terms of the Brylinski-Kostant filtration. Moreover, we give an equivalence of categories between the category of automorphic vector bundles on the stack of G-zips and a category of admissible modules with actions of a 0-dimensional algebraic subgroup a Levi subgroup and monodromy operators.
Let $G$ be a split semisimple algebraic group over a field and let $A^*$ be an oriented cohomology theory in the Levine–Morel sense. We provide a uniform approach to the $A^*$-motives of geometrically cellular smooth projective $G$-varieties based on the Hopf algebra structure of $A^*(G)$. Using this approach, we provide various applications to the structure of motives of twisted flag varieties.