To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a precise classification, in terms of Shimura data, of all $1$-dimensional Shimura subvarieties of a moduli space of polarized abelian varieties.
Let G be a finite group and r be a prime divisor of the order of G. An irreducible character of G is said to be quasi r-Steinberg if it is non-zero on every r-regular element of G. A quasi r-Steinberg character of degree $\displaystyle |Syl_r(G)|$ is said to be weak r-Steinberg if it vanishes on the r-singular elements of $G.$ In this article, we classify the quasi r-Steinberg cuspidal characters of the general linear group $GL(n,q).$ Then we characterize the quasi r-Steinberg characters of $GL(2,q)$ and $GL(3,q).$ Finally, we obtain a classification of the weak r-Steinberg characters of $GL(n,q).$
In this paper, we establish a definitive result which almost completely closes the problem of bounded elementary generation for Chevalley groups of rank $\ge 2$ over arbitrary Dedekind rings R of arithmetic type, with uniform bounds. Namely, we show that for every reduced irreducible root system $\Phi $ of rank $\ge 2$, there exists a universal bound $L=L(\Phi )$ such that the simply connected Chevalley groups $G(\Phi ,R)$ have elementary width $\le L$ for all Dedekind rings of arithmetic type R.
In this paper, we develop two new homological invariants called relative dominant dimension with respect to a module and relative codominant dimension with respect to a module. Among the applications are precise connections between Ringel duality, split quasi-hereditary covers and double centralizer properties, constructions of split quasi-hereditary covers of quotients of Iwahori-Hecke algebras using Ringel duality of q-Schur algebras and a new proof for Ringel self-duality of the blocks of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$. These homological invariants are studied over Noetherian algebras which are finitely generated and projective as a module over the ground ring. They are shown to behave nicely under change of rings techniques.
In this paper, the authors introduce a new notion called the quantum wreath product, which is the algebra $B \wr _Q \mathcal {H}(d)$ produced from a given algebra B, a positive integer d and a choice $Q=(R,S,\rho ,\sigma )$ of parameters. Important examples that arise from our construction include many variants of the Hecke algebras, such as the Ariki–Koike algebras, the affine Hecke algebras and their degenerate version, Wan–Wang’s wreath Hecke algebras, Rosso–Savage’s (affine) Frobenius Hecke algebras, Kleshchev–Muth’s affine zigzag algebras and the Hu algebra that quantizes the wreath product $\Sigma _m \wr \Sigma _2$ between symmetric groups.
In the first part of the paper, the authors develop a structure theory for the quantum wreath products. Necessary and sufficient conditions for these algebras to afford a basis of suitable size are obtained. Furthermore, a Schur–Weyl duality is established via a splitting lemma and mild assumptions on the base algebra B. Our uniform approach encompasses many known results which were proved in a case by case manner. The second part of the paper involves the problem of constructing natural subalgebras of Hecke algebras that arise from wreath products. Moreover, a bar-invariant basis of the Hu algebra via an explicit formula for its extra generator is also described.
In this paper, we study the universal lifting spaces of local Galois representations valued in arbitrary reductive group schemes when $\ell \neq p$. In particular, under certain technical conditions applicable to any root datum, we construct a canonical smooth component in such spaces, generalizing the minimally ramified deformation condition previously studied for classical groups. Our methods involve extending the notion of isotypic decomposition for a $\operatorname {\mathrm {GL}}_n$-valued representation to general reductive group schemes. To deal with certain scheme-theoretic issues coming from this notion, we are led to a detailed study of certain families of disconnected reductive groups, which we call weakly reductive group schemes. Our work can be used to produce geometric lifts for global Galois representations, and we illustrate this for $\mathrm {G}_2$-valued representations.
Given a connected reductive algebraic group G over an algebraically closed field, we investigate the Picard group of the moduli stack of principal G-bundles over an arbitrary family of smooth curves.
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of an open problem by Stanley from 2000 and an open problem by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced Kronecker coefficients is ${\textsf {NP}}$-hard, and computing them is ${{{\textsf {#P}}}}$-hard under parsimonious many-one reductions. Our proof also provides an explicit isomorphism of the corresponding highest weight vector spaces.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.
This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
We describe the $J$-invariant of a semisimple algebraic group $G$ over a generic splitting field of a Tits algebra of $G$ in terms of the $J$-invariant over the base field. As a consequence we prove a 10-year-old conjecture of Quéguiner-Mathieu, Semenov, and Zainoulline on the $J$-invariant of groups of type $\mathrm {D}_n$. In the case of type $\mathrm {D}_n$ we also provide explicit formulas for the first component and in some cases for the second component of the $J$-invariant.
For closed subgroups L and R of a compact Lie group G, a left L-space X, and an L-equivariant continuous map $A:X\to G/R$, we introduce the twisted action of the equivariant cohomology $H_R^{\bullet }(\mathrm {pt},\Bbbk )$ on the equivariant cohomology $H_L^{\bullet }(X,\Bbbk )$. Considering this action as a right action, $H_L^{\bullet }(X,\Bbbk )$ becomes a bimodule together with the canonical left action of $H_L^{\bullet }(\mathrm {pt},\Bbbk )$. Using this bimodule structure, we prove an equivariant version of the Künneth isomorphism. We apply this result to the computation of the equivariant cohomologies of Bott–Samelson varieties and to a geometric construction of the bimodule morphisms between them.
In this paper, we prove some orthogonality relations for representations arising from deep level Deligne–Lusztig schemes of Coxeter type. This generalizes previous results of Lusztig [Lus04], and of Chan and the second author [CI21b]. Applications include the study of smooth representations of p-adic groups in the cohomology of p-adic Deligne–Lusztig spaces and their relation to the local Langlands correspondences. Also, the geometry of deep level Deligne–Lusztig schemes gets accessible, in the spirit of Lusztig’s work [Lus76].
We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of $\operatorname {\mathrm {GL}}_n(F)$, where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_n$ and $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_{n - 1}$ Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of $\operatorname {\mathrm {GL}}_n$ over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
For any abelian group $A$, we prove an asymptotic formula for the number of $A$-extensions $K/\mathbb {Q}$ of bounded discriminant such that the associated norm one torus $R_{K/\mathbb {Q}}^1 \mathbb {G}_m$ satisfies weak approximation. We are also able to produce new results on the Hasse norm principle and to provide new explicit values for the leading constant in some instances of Malle's conjecture.
In this paper we produce infinite families of counterexamples to Jantzen's question posed in 1980 on the existence of Weyl $p$-filtrations for Weyl modules for an algebraic group and Donkin's tilting module conjecture formulated in 1990. New techniques to exhibit explicit examples are provided along with methods to produce counterexamples in large rank from counterexamples in small rank. Counterexamples can be produced via our methods for all groups other than when the root system is of type ${\rm A}_{n}$ or ${\rm B}_{2}$.
Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras $S(2, d)$ and their $q$-analogues. Our second main result completely determines the relative dominant dimension of $S(2, d)$ with respect to $Q=V^{\otimes d}$, the $d$-th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of $q$-Schur algebras $S(2,d)$ give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the $q$-Schur algebra $S(2, d)$ and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a $q$-Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.
The complete classification of the finite simple groups that are $(2,3)$-generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$-generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$, $k\geq 4$. As a byproduct, we also obtain $(2,3)$-generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$.
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke–Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.