We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group $G$, a reductive subgroup $H\subseteq G$, and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$, defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of $G$. This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$, $n\geqslant 3$), prompting us to seek necessary and sufficient conditions for non-emptiness.
We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$-regularity of $(G,H)$. This $\mathfrak{a}$-regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$. We also provide a classification of the $\mathfrak{a}$-regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.
We formulate a $q$-Schur algebra associated with an arbitrary $W$-invariant finite set $X_{\text{f}}$ of integral weights for a complex simple Lie algebra with Weyl group $W$. We establish a $q$-Schur duality between the $q$-Schur algebra and Hecke algebra associated with $W$. We then realize geometrically the $q$-Schur algebra and duality and construct a canonical basis for the $q$-Schur algebra with positivity. With suitable choices of $X_{\text{f}}$ in classical types, we recover the $q$-Schur algebras in the literature. Our $q$-Schur algebras are closely related to the category ${\mathcal{O}}$, where the type $G_{2}$ is studied in detail.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
For a split reductive group $G$ over a finite field, we show that the intersection (cohomology) motive of the moduli stack of iterated $G$-shtukas with bounded modification and level structure is defined independently of the standard conjectures on motivic $t$-structures on triangulated categories of motives. This is in accordance with general expectations on the independence of $\ell$ in the Langlands correspondence for function fields.
Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
Let $p$ be an odd prime. We construct a $p$-group $P$ of nilpotency class two, rank seven and exponent $p$, such that $\text{Aut}(P)$ induces $N_{\text{GL}(7,p)}(G_{2}(p))=Z(\text{GL}(7,p))G_{2}(p)$ on the Frattini quotient $P/\unicode[STIX]{x1D6F7}(P)$. The constructed group $P$ is the smallest $p$-group with these properties, having order $p^{14}$, and when $p=3$ our construction gives two nonisomorphic $p$-groups. To show that $P$ satisfies the specified properties, we study the action of $G_{2}(q)$ on the octonion algebra over $\mathbb{F}_{q}$, for each power $q$ of $p$, and explore the reducibility of the exterior square of each irreducible seven-dimensional $\mathbb{F}_{q}[G_{2}(q)]$-module.
We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.
We show that a nearly square independent and identically distributed random integral matrix is surjective over the integral lattice with very high probability. This answers a question by Koplewitz [6]. Our result extends to sparse matrices as well as to matrices of dependent entries.
We extend classical density theorems of Borel and Dani–Shalom on lattices in semisimple, respectively solvable algebraic groups over local fields to approximate lattices. Our proofs are based on the observation that Zariski closures of approximate subgroups are close to algebraic subgroups. Our main tools are stationary joinings between the hull dynamical systems of discrete approximate subgroups and their Zariski closures.
We answer a question of Skalski and Sołan (2016) about inner faithfulness of the Curran’s map of extending a quantum increasing sequence to a quantum permutation. Roughly speaking, we find a inductive setting in which the inner faithfulness of Curran’s map can be boiled down to inner faithfulness of similar map for smaller algebras and then rely on inductive generation result for quantum permutation groups of Brannan, Chirvasitu and Freslon (2018).
The notion of quantized characters was introduced in our previous paper as a natural quantization of characters in the context of asymptotic representation theory for quantum groups. As in the case of ordinary groups, the representation associated with any extreme quantized character generates a von Neumann factor. From the viewpoint of operator algebras (and measurable dynamical systems), it is natural to ask what is the Murray–von Neumann–Connes type of the resulting factor. In this paper, we give a complete solution to this question when the inductive system is of quantum unitary groups $U_{q}(N)$.
Consider the action of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on the $p$-adic unit sphere ${\mathcal{S}}_{n}$ arising from the linear action on $\mathbb{Q}_{p}^{n}\setminus \{0\}$. We show that for the action of a semigroup $\mathfrak{S}$ of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on ${\mathcal{S}}_{n}$, the following are equivalent: (1) $\mathfrak{S}$ acts distally on ${\mathcal{S}}_{n}$; (2) the closure of the image of $\mathfrak{S}$ in $\operatorname{PGL}(n,\mathbb{Q}_{p})$ is a compact group. On ${\mathcal{S}}_{n}$, we consider the ‘affine’ maps $\overline{T}_{a}$ corresponding to $T$ in $\operatorname{GL}(n,\mathbb{Q}_{p})$ and a nonzero $a$ in $\mathbb{Q}_{p}^{n}$ satisfying $\Vert T^{-1}(a)\Vert _{p}<1$. We show that there exists a compact open subgroup $V$, which depends on $T$, such that $\overline{T}_{a}$ is distal for every nonzero $a\in V$ if and only if $T$ acts distally on ${\mathcal{S}}_{n}$. The dynamics of ‘affine’ maps on $p$-adic unit spheres is quite different from that on the real unit spheres.
For any prime number $p$ and field $k$, we characterize the $p$-retract rationality of an algebraic $k$-torus in terms of its character lattice. We show that a $k$-torus is retract rational if and only if it is $p$-retract rational for every prime $p$, and that the Noether problem for retract rationality for a group of multiplicative type $G$ has an affirmative answer for $G$ if and only if the Noether problem for $p$-retract rationality for $G$ has a positive answer for all $p$. For every finite set of primes $S$ we give examples of tori that are $p$-retract rational if and only if $p\notin S$.
Given a finite group $\text{G}$ and a field $K$, the faithful dimension of $\text{G}$ over $K$ is defined to be the smallest integer $n$ such that $\text{G}$ embeds into $\operatorname{GL}_{n}(K)$. We address the problem of determining the faithful dimension of a $p$-group of the form $\mathscr{G}_{q}:=\exp (\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q})$ associated to $\mathfrak{g}_{q}:=\mathfrak{g}\otimes _{\mathbb{Z}}\mathbb{F}_{q}$ in the Lazard correspondence, where $\mathfrak{g}$ is a nilpotent $\mathbb{Z}$-Lie algebra which is finitely generated as an abelian group. We show that in general the faithful dimension of $\mathscr{G}_{p}$ is a piecewise polynomial function of $p$ on a partition of primes into Frobenius sets. Furthermore, we prove that for $p$ sufficiently large, there exists a partition of $\mathbb{N}$ by sets from the Boolean algebra generated by arithmetic progressions, such that on each part the faithful dimension of $\mathscr{G}_{q}$ for $q:=p^{f}$ is equal to $fg(p^{f})$ for a polynomial $g(T)$. We show that for many naturally arising $p$-groups, including a vast class of groups defined by partial orders, the faithful dimension is given by a single formula of the latter form. The arguments rely on various tools from number theory, model theory, combinatorics and Lie theory.
We study the realization of acyclic cluster algebras as coordinate rings of Coxeter double Bruhat cells in Kac–Moody groups. We prove that all cluster monomials with $\mathbf{g}$-vector lying in the doubled Cambrian fan are restrictions of principal generalized minors. As a corollary, cluster algebras of finite and affine type admit a complete and non-recursive description via (ind-)algebraic group representations, in a way similar in spirit to the Caldero–Chapoton description via quiver representations. In type $A_{1}^{(1)}$, we further show that elements of several canonical bases (generic, triangular, and theta) which complete the partial basis of cluster monomials are composed entirely of restrictions of minors. The discrepancy among these bases is accounted for by continuous parameters appearing in the classification of irreducible level-zero representations of affine Lie groups. We discuss how our results illuminate certain parallels between the classification of representations of finite-dimensional algebras and of integrable weight representations of Kac–Moody algebras.
Given a free unitary quantum group $G=A_{u}(F)$, with $F$ not a unitary $2\times 2$ matrix, we show that the Martin boundary of the dual of $G$ with respect to any $G$-${\hat{G}}$-invariant, irreducible, finite-range quantum random walk coincides with the topological boundary defined by Vaes and Vander Vennet. This can be thought of as a quantum analogue of the fact that the Martin boundary of a free group coincides with the space of ends of its Cayley tree.
Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.
In Ersoy et al. [J. Algebra481 (2017), 1–11], we have proved that if G is a locally finite group with an elementary abelian p-subgroup A of order strictly greater than p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α) does not involve an infinite simple group, then G is almost locally soluble. This result is a consequence of another result proved in Ersoy et al. [J. Algebra481 (2017), 1–11], namely: if G is a simple locally finite group with an elementary abelian group A of automorphisms acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov and for every non-identity α ∈ A the set of fixed points CG(α) does not involve an infinite simple groups then G is finite. In this paper, we improve this result about simple locally finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ≅PSLp(k) where char k ≠ p and P has a subgroup Q of order p2 such that CG(P) = Q.