To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We initiate a systematic study of the perfection of affine group schemes of finite type over fields of positive characteristic. The main result intrinsically characterises and classifies the perfections of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie groups topologically localised away from the characteristic. We also study the representations of perfectly reductive groups. We establish a highest weight classification of simple modules, the decomposition into blocks, and relate extension groups to those of the underlying abstract group.
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.
After this general definition, we focus on quiver gauge theories attached to a quiver $\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra $\mathfrak {g}_{\Gamma }$ on category $ \mathcal {O}$ for these Coulomb branch algebras. When $ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.
To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $\mathrm {GL}_2$. Here, we use ‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary group. Then we specialize this general formula to study quaternionic automorphic representations on the exceptional group $G_2$, eventually getting an analog of the Eichler–Selberg trace formula for classical modular forms. We finally use this together with some techniques of Chenevier, Renard and Taïbi to compute dimensions of spaces of level-$1$ quaternionic representations. On the way, we prove a Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic representations on the compact-at-infinity form $G_2^c$.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation theory argument shows that regularity miraculously does not matter for specifically the case of quaternionic discrete series.
We hope that the techniques and shortcuts highlighted in this project are of interest in other computations about discrete-at-infinity automorphic representations on arbitrary reductive groups instead of just classical ones.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
Let $G= N\rtimes H$ be a locally compact group which is a semi-direct product of a closed normal subgroup N and a closed subgroup H. The Bohr compactification ${\rm Bohr}(G)$ and the profinite completion ${\rm Prof}(G)$ of G are, respectively, isomorphic to semi-direct products $Q_1 \rtimes {\rm Bohr}(H)$ and $Q_2 \rtimes {\rm Prof}(H)$ for appropriate quotients $Q_1$ of ${\rm Bohr}(N)$ and $Q_2$ of ${\rm Prof}(N).$ We give a precise description of $Q_1$ and $Q_2$ in terms of the action of H on appropriate subsets of the dual space of N. In the case where N is abelian, we have ${\rm Bohr}(G)\cong A \rtimes {\rm Bohr}(H)$ and ${\rm Prof}(G)\cong B \rtimes {\rm Prof}(H),$ where A (respectively B) is the dual group of the group of unitary characters of N with finite H-orbits (respectively with finite image). Necessary and sufficient conditions are deduced for G to be maximally almost periodic or residually finite. We apply the results to the case where $G= \Lambda\wr H$ is a wreath product of discrete groups; we show in particular that, in case H is infinite, ${\rm Bohr}(\Lambda\wr H)$ is isomorphic to ${\rm Bohr}(\Lambda^{\rm Ab}\wr H)$ and ${\rm Prof}(\Lambda\wr H)$ is isomorphic to ${\rm Prof}(\Lambda^{\rm Ab} \wr H),$ where $\Lambda^{\rm Ab}=\Lambda/ [\Lambda, \Lambda]$ is the abelianisation of $\Lambda.$ As examples, we compute ${\rm Bohr}(G)$ and ${\rm Prof}(G)$ when G is a lamplighter group and when G is the Heisenberg group over a unital commutative ring.
In our paper, we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq {\mathbb {Z}}/q{\mathbb {Z}}$ in the case of composite q. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a general strategy for determining the quantum automorphism groups of such graphs. Applying this procedure, we find the quantum symmetries of the halved cube graph, the folded cube graph, and the Hamming graphs.
Let $\textbf {G}$ be a simply connected semisimple algebraic group over a field of characteristic greater than the Coxeter number. We construct a monoidal action of the diagrammatic Hecke category on the principal block $\operatorname {Rep}_0(\textbf {G})$ of $\operatorname {Rep}(\textbf {G})$ by wall-crossing functors. This action was conjectured to exist by Riche and Williamson. Our method uses constructible sheaves and relies on Smith–Treumann theory.
For an unramified reductive group, we determine the connected components of affine Deligne–Lusztig varieties in the affine flag variety. Based on work of Hamacher, Kim, and Zhou, this result allows us to verify, in the unramified group case, the He–Rapoport axioms, the almost product structure of Newton strata, and the precise description of isogeny classes predicted by the Langlands–Rapoport conjecture, for the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric level structure.
Let BG be the classifying space of an algebraic group G over the field ${\mathbb C}$ of complex numbers. There are smooth projective approximations X of $BG\times {\mathbb P}^{\infty}$, by Ekedahl. We compute a new stable birational invariant of X defined by the difference of two coniveau filtrations of X, by Benoist and Ottem. Hence we give many examples such that two coniveau filtrations are different.
We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$-modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$, T a maximal torus of G and $G_1$ the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
Let $G$ be a reductive group over an algebraically closed field $k$ of separably good characteristic $p>0$ for $G$. Under these assumptions, a Springer isomorphism $\phi : \mathcal {N}_{\mathrm {red}}(\mathfrak {g}) \rightarrow \mathcal {V}_{\mathrm {red}}(G)$ from the nilpotent scheme of $\mathfrak {g}$ to the unipotent scheme of $G$ always exists and allows one to integrate any $p$-nilpotent element of $\mathfrak {g}$ into a unipotent element of $G$. One should wonder whether such a punctual integration can lead to an integration of restricted $p$-nil $p$-subalgebras of $\mathfrak {g}= \operatorname {Lie}(G)$. We provide a counter-example of the existence of such an integration in general, as well as criteria to integrate some restricted $p$-nil $p$-subalgebras of $\mathfrak {g}$ (that are maximal in a certain sense). This requires the generalisation of the notion of infinitesimal saturation first introduced by Deligne and the extension of one of his theorems on infinitesimally saturated subgroups of $G$ to the previously mentioned framework.
We consider rational representations of a connected linear algebraic group $\mathbb {G}$ over a field $k$ of positive characteristic $p > 0$. We introduce a natural extension $M \mapsto \Pi (\mathbb {G})_M$ to $\mathbb {G}$-modules of the $\pi$-point support theory for modules $M$ for a finite group scheme $G$ and show that this theory is essentially equivalent to the more ‘intrinsic’ and ‘explicit’ theory $M \mapsto \mathbb {P}\mathfrak{C}(\mathbb {G})_M$ of supports for an algebraic group of exponential type, a theory which uses $1$-parameter subgroups $\mathbb {G}_a \to \mathbb {G}$. We extend our support theory to bounded complexes of $\mathbb {G}$-modules, $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$. We introduce the tensor triangulated category $\mathit {StMod}(\mathbb {G})$, the Verdier quotient of the bounded derived category $D^b(\mathit {Mod}(\mathbb {G}))$ by the thick subcategory of mock injective modules. Our support theory satisfies all the ‘standard properties’ for a theory of supports for $\mathit {StMod}(\mathbb {G})$. As an application, we employ $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$ to establish the classification of $(r)$-complete, thick tensor ideals of $\mathit {stmod}(\mathbb {G})$ in terms of locally $\mathit {stmod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$ and the classification of $(r)$-complete, localizing subcategories of $\mathit {StMod}(\mathbb {G})$ in terms of locally $\mathit {StMod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$.
We introduce the combinatorial notion of a q-factorization graph intended as a tool to study and express results related to the classification of prime simple modules for quantum affine algebras. These are directed graphs equipped with three decorations: a coloring and a weight map on vertices, and an exponent map on arrows (the exponent map can be seen as a weight map on arrows). Such graphs do not contain oriented cycles and, hence, the set of arrows induces a partial order on the set of vertices. In this first paper on the topic, beside setting the theoretical base of the concept, we establish several criteria for deciding whether or not a tensor product of two simple modules is a highest-$\ell $-weight module and use such criteria to prove, for type A, that a simple module whose q-factorization graph has a totally ordered vertex set is prime.
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type $\mathsf {F}_4$, $\mathsf {E}_6$, or $\mathsf {E}_7$. We study these objects over an arbitrary base ring R, with particular attention to the case $R = \mathbb {Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
We categorify the commutation of Nakajima’s Heisenberg operators $P_{\pm 1}$ andtheir infinitely many counterparts in the quantum toroidal algebra $U_{q_1,q_2}(\ddot {gl_1})$ acting on the Grothendieck groups of Hilbert schemes from [10, 24, 26, 32]. By combining our result with [26], one obtains a geometric categorical $U_{q_1,q_2}(\ddot {gl_1})$ action on the derived category of Hilbert schemes. Our main technical tool is a detailed geometric study of certain nested Hilbert schemes of triples and quadruples, through the lens of the minimal model program, by showing that these nested Hilbert schemes are either canonical or semidivisorial log terminal singularities.
We generalize the works of Pappas–Rapoport–Zhu on twisted affine Grassmannians to the wildly ramified case under mild assumptions. This rests on a construction of certain smooth affine $\mathbb {Z}[t]$-groups with connected fibers of parahoric type, motivated by previous work of Tits. The resulting $\mathbb {F}_p(t)$-groups are pseudo-reductive and sometimes non-standard in the sense of Conrad–Gabber–Prasad, and their $\mathbb {F}_p [\hspace {-0,5mm}[ {t} ]\hspace {-0,5mm}] $-models are parahoric in a generalized sense. We study their affine Grassmannians, proving normality of Schubert varieties and Zhu’s coherence theorem.