We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a closed, orientable, compact surface S of constant negative curvature and genus
$g \geq 2$
, we study the measure-theoretic entropy of the Bowen–Series boundary map with respect to its smooth invariant measure. We obtain an explicit formula for the entropy that only depends on the perimeter of the
$(8g-4)$
-sided fundamental polygon of the surface S and its genus. Using this, we analyze how the entropy changes in the Teichmüller space of S and prove the following flexibility result: the measure-theoretic entropy takes all values between 0 and a maximum that is achieved on the surface that admits a regular
$(8g-4)$
-sided fundamental polygon. We also compare the measure-theoretic entropy to the topological entropy of these maps and show that the smooth invariant measure is not a measure of maximal entropy.
We consider the continued fraction expansion of real numbers under the action of a nonuniform lattice in
$\text {PSL}(2,{\mathbb R})$
and prove metric relations between the convergents and a natural geometric notion of good approximations.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group
$\mathrm {SL}(d,{\mathbb {R}})$
and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $\mathbf{SL}_{n}(\mathbb{Z})$. This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $\mathbf{SL}_{n}(K)$ for $K$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $\mathbf{SL}_{n}(\mathbb{Z})$.
Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the $n$-dimensional quaternionic hyperbolic space. The linear group $\text{Sp}(n,1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup $G$ of $\text{Sp}(n,1)$ is called Zariski dense if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n}\cup \unicode[STIX]{x2202}\mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup $G$ of $\text{Sp}(n,1)$ is discrete if for every loxodromic element $g\in G$ the two-generator subgroup $\langle f,gfg^{-1}\rangle$ is discrete, where the generator $f\in \text{Sp}(n,1)$ is a certain fixed element not necessarily from $G$.
Dolfi, Guralnick, Praeger and Spiga asked whether there exist infinitely many primitive groups of twisted wreath type with non-trivial coprime subdegrees. Here, we settle this question in the affirmative. We construct infinite families of primitive twisted wreath permutation groups with non-trivial coprime subdegrees. In particular, we define a primitive twisted wreath group G(m, q) constructed from the non-abelian simple group PSL(2, q) and a primitive permutation group of diagonal type with socle PSL(2, q)m, and determine many subdegrees for this group. A consequence is that we determine all values of m and q for which G(m, q) has non-trivial coprime subdegrees. In the case where m = 2 and $q\notin \{7,11,29\}$, we obtain a full classification of all pairs of non-trivial coprime subdegrees.
We prove two results about the width of words in $\operatorname{SL}_{n}(\mathbb{Z})$. The first is that, for every $n\geqslant 3$, there is a constant $C(n)$ such that the width of any word in $\operatorname{SL}_{n}(\mathbb{Z})$ is less than $C(n)$. The second result is that, for any word $w$, if $n$ is big enough, the width of $w$ in $\operatorname{SL}_{n}(\mathbb{Z})$ is at most 87.
Based on a simple object, an i.i.d. sequence of positive integer-valued random variables {an}n∊ℤ, we introduce and study two random structures and their connections. First, a population dynamics, in which each individual is born at time n and dies at time n + an. This dynamics is that of a D/GI/∞ queue, with arrivals at integer times and service times given by {an}n∊ℤ. Second, the directed random graph Tf on ℤ generated by the random map f(n) = n + an. Assuming only that E [a0] < ∞ and P [a0 = 1] > 0, we show that, in steady state, the population dynamics is regenerative, with one individual alive at each regeneration epoch. We identify a unimodular structure in this dynamics. More precisely, Tf is a unimodular directed tree, in which f(n) is the parent of n. This tree has a unique bi-infinite path. Moreover, Tf splits the integers into two categories: ephemeral integers, with a finite number of descendants of all degrees, and successful integers, with an infinite number. Each regeneration epoch is a successful individual such that all integers less than it are its descendants of some order. Ephemeral, successful, and regeneration integers form stationary and mixing point processes on ℤ.
We generalize work by Bourgain and Kontorovich [On the local-global conjecture for integral Apollonian gaskets, Invent. Math. 196 (2014), 589–650] and Zhang [On the local-global principle for integral Apollonian 3-circle packings, J. Reine Angew. Math. 737, (2018), 71–110], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group ${\mathcal{A}}\leqslant \text{PSL}_{2}(K)$ satisfying certain conditions, where $K$ is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof is that ${\mathcal{A}}$ possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in $\operatorname{PSL}_{2}({\mathcal{O}}_{K})$ containing a Zariski dense subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$.
Let G be a linear group such that for every g ∈ G there is a finite set ${\cal R}(g)$ with the property that for every x ∈ G all sufficiently long commutators [g, x, x, …, x] belong to ${\cal R}(g)$. We prove that G is finite-by-hypercentral.
Let ℍ be the division ring of real quaternions. Let SL(2, ℍ) be the group of 2 × 2 quaternionic matrices $A={\scriptsize{(\begin{array}{l@{\quad}l} a & b \\ c & d \end{array})}}$ with quaternionic determinant det A = |ad − aca−1b| = 1. This group acts by the orientation-preserving isometries of the five-dimensional real hyperbolic space. We obtain discreteness criteria for Zariski-dense subgroups of SL(2, ℍ).
The genus spectrum of a finite group G is the set of all g such that G acts faithfully on a compact Riemann surface of genus g. It is an open problem to find a general description of the genus spectrum of the groups in interesting classes, such as the Abelian p-groups. Motivated by earlier work of Talu for odd primes, we develop a general combinatorial method, for arbitrary primes, to obtain a structured description of the so-called reduced genus spectrum of Abelian p-groups, including the reduced minimum genus. In particular, we determine the complete genus spectrum for a large subclass, namely, those having ‘large’ defining invariants. With our method we construct infinitely many counterexamples to a conjecture of Talu, which states that an Abelian p-group is recoverable from its genus spectrum. Finally, we give a series of examples of our method, in the course of which we prove, for example, that almost all elementary Abelian p-groups are uniquely determined by their minimum genus, and that almost all Abelian p-groups of exponent p2 are uniquely determined by their minimum genus and Kulkarni invariant.
Almost-flat manifolds were defined by Gromov as a natural generalization of flat manifolds and as such share many of their properties. Similarly to flat manifolds, it turns out that the existence of a spin structure on an almost-flat manifold is determined by the canonical orthogonal representation of its fundamental group. Utilizing this, we classify the spin structures on all four-dimensional almost-flat manifolds that are not flat. Out of 127 orientable families, we show that there are exactly 15 that are non-spin, the rest are, in fact, parallelizable.
Every finite group $G$ acts on some nonorientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of $G$. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we obtain group presentations which allow one to find the actions realizing the symmetric crosscap number of groups of each group of order less than or equal to 63.
In this paper we describe methods for finding very small maximal subgroups of very large groups, with particular application to the subgroup 47:23 of the Baby Monster. This example is completely intractable by standard or naïve methods. The example of finding 31:15 inside the Thompson group $\text{Th}$ is also discussed as a test case.
The Gehring–Martin–Tan inequality for two-generator subgroups of $\text{PSL}(2,\mathbb{C})$ is one of the best known discreteness conditions. A Kleinian group $G$ is called a Gehring–Martin–Tan group if the equality holds for the group $G$. We give a method for constructing Gehring–Martin–Tan groups with a generator of order four and present some examples. These groups arise as groups of finite-volume hyperbolic 3-orbifolds.
This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prime order on such surfaces. Using this result we prove that the branch locus is connected for surfaces of topological genus 4 and 5.
Thurston introduced shear deformations (cataclysms) on geodesic laminations–deformations including left and right displacements along geodesics. For hyperbolic surfaces with cusps, we consider shear deformations on disjoint unions of ideal geodesics. The length of a balanced weighted sum of ideal geodesics is defined and the Weil–Petersson (WP) duality of shears and the defined length is established. The Poisson bracket of a pair of balanced weight systems on a set of disjoint ideal geodesics is given in terms of an elementary $2$-form. The symplectic geometry of balanced weight systems on ideal geodesics is developed. Equality of the Fock shear coordinate algebra and the WP Poisson algebra is established. The formula for the WP Riemannian pairing of shears is also presented.
We investigate subgroups of $\text{SL}(n,\mathbb{Z})$ which preserve an open nondegenerate convex cone in $\mathbb{R}^{n}$ and admit in that cone as fundamental domain a polyhedral cone of which some faces are allowed to lie on the boundary. Examples are arithmetic groups acting on self-dual cones, Weyl groups of certain Kac–Moody algebras, and they do occur in algebraic geometry as the automorphism groups of projective manifolds acting on their ample cones.