We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.
Let
$\Gamma _{g}$
be the fundamental group of a closed connected orientable surface of genus
$g\geq 2$
. We develop a new method for integrating over the representation space
$\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$
, where
$S_{n}$
is the symmetric group of permutations of
$\{1,\ldots ,n\}$
. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g.
Given
$\phi \in \mathbb {X}_{g,n}$
and
$\gamma \in \Gamma _{g}$
, we let
$\mathsf {fix}_{\gamma }(\phi )$
be the number of fixed points of the permutation
$\phi (\gamma )$
. The function
$\mathsf {fix}_{\gamma }$
is a special case of a natural family of functions on
$\mathbb {X}_{g,n}$
called Wilson loops. Our new methodology leads to an asymptotic formula, as
$n\to \infty $
, for the expectation of
$\mathsf {fix}_{\gamma }$
with respect to the uniform probability measure on
$\mathbb {X}_{g,n}$
, which is denoted by
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$
. We prove that if
$\gamma \in \Gamma _{g}$
is not the identity and q is maximal such that
$\gamma $
is a qth power in
$\Gamma _{g}$
, then
as
$n\to \infty $
, where
$d\left (q\right )$
is the number of divisors of q. Even the weaker corollary that
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$
as
$n\to \infty $
is a new result of this paper. We also prove that
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$
can be approximated to any order
$O(n^{-M})$
by a polynomial in
$n^{-1}$
.
Let BG be the classifying space of an algebraic group G over the field ${\mathbb C}$ of complex numbers. There are smooth projective approximations X of $BG\times {\mathbb P}^{\infty}$, by Ekedahl. We compute a new stable birational invariant of X defined by the difference of two coniveau filtrations of X, by Benoist and Ottem. Hence we give many examples such that two coniveau filtrations are different.
We construct an action of the affine Hecke category on the principal block $\mathrm {Rep}_0(G_1T)$ of $G_1T$-modules where G is a connected reductive group over an algebraically closed field of characteristic $p> 0$, T a maximal torus of G and $G_1$ the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
We study the arithmeticity of $\mathbb {C}$-Fuchsian subgroups of some nonarithmetic lattices constructed by Deraux et al. [‘New non-arithmetic complex hyperbolic lattices’, Invent. Math.203 (2016), 681–771]. Our results give an answer to a question raised by Wells [Hybrid Subgroups of Complex Hyperbolic Isometries, Doctoral thesis, Arizona State University, 2019].
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
Let $G$ be a reductive group over an algebraically closed field $k$ of separably good characteristic $p>0$ for $G$. Under these assumptions, a Springer isomorphism $\phi : \mathcal {N}_{\mathrm {red}}(\mathfrak {g}) \rightarrow \mathcal {V}_{\mathrm {red}}(G)$ from the nilpotent scheme of $\mathfrak {g}$ to the unipotent scheme of $G$ always exists and allows one to integrate any $p$-nilpotent element of $\mathfrak {g}$ into a unipotent element of $G$. One should wonder whether such a punctual integration can lead to an integration of restricted $p$-nil $p$-subalgebras of $\mathfrak {g}= \operatorname {Lie}(G)$. We provide a counter-example of the existence of such an integration in general, as well as criteria to integrate some restricted $p$-nil $p$-subalgebras of $\mathfrak {g}$ (that are maximal in a certain sense). This requires the generalisation of the notion of infinitesimal saturation first introduced by Deligne and the extension of one of his theorems on infinitesimally saturated subgroups of $G$ to the previously mentioned framework.
We call a semigroup right perfect if every object in the category of unitary right acts over that semigroup has a projective cover. In this paper, we generalize results about right perfect monoids to the case of semigroups. In our main theorem, we will give nine conditions equivalent to right perfectness of a factorizable semigroup. We also prove that right perfectness is a Morita invariant for factorizable semigroups.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
In a 1968 issue of the Proceedings, P. M. Cohn famously claimed that a commutative domain is atomic if and only if it satisfies the ascending chain condition on principal ideals (ACCP). Some years later, a counterexample was however provided by A. Grams, who showed that every commutative domain with the ACCP is atomic, but not vice versa. This has led to the problem of finding a sensible (ideal-theoretic) characterisation of atomicity.
The question (explicitly stated on p. 3 of A. Geroldinger and F. Halter–Koch’s 2006 monograph on factorisation) is still open. We settle it here by using the language of monoids and preorders.
For a
$k$
-uniform hypergraph
$\mathcal{H}$
on vertex set
$\{1, \ldots, n\}$
we associate a particular signed incidence matrix
$M(\mathcal{H})$
over the integers. For
$\mathcal{H} \sim \mathcal{H}_k(n, p)$
an Erdős–Rényi random
$k$
-uniform hypergraph,
${\mathrm{coker}}(M(\mathcal{H}))$
is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for
$p = \omega (1/n^{k - 1})$
,
${\mathrm{coker}}(M(\mathcal{H}))$
is torsion-free.
Let G be a p-group for some prime p. Recall that the Hughes subgroup of G is the subgroup generated by all of the elements of G with order not equal to p. In this paper, we prove that if the Hughes subgroup of G is cyclic, then G has exponent p or is cyclic or is dihedral. We also prove that if the Hughes subgroup of G is generalised quaternion, then G must be generalised quaternion. With these results in hand, we classify the tidy p-groups.
We study the behavior of the co-spectral radius of a subgroup H of a discrete group $\Gamma $ under taking intersections. Our main result is that the co-spectral radius of an invariant random subgroup does not drop upon intersecting with a deterministic co-amenable subgroup. As an application, we find that the intersection of independent co-amenable invariant random subgroups is co-amenable.
We show that a group that is hyperbolic relative to strongly shortcut groups is itself strongly shortcut, thus obtaining new examples of strongly shortcut groups. The proof relies on a result of independent interest: we show that every relatively hyperbolic group acts properly and cocompactly on a graph in which the parabolic subgroups act properly and cocompactly on convex subgraphs.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
Inspired by the phase transition results for non-singular Gaussian actions introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli actions. For generalized Bernoulli actions arising from groups acting on trees, we are able to give a very precise description of their ergodic-theoretical properties in terms of the Poincaré exponent of the group.
Let G denote a possibly discrete topological group admitting an open subgroup I which is pro-p. If H denotes the corresponding Hecke algebra over a field k of characteristic p, then we study the adjunction between H-modules and k-linear smooth G-representations in terms of various model structures. If H is a Gorenstein ring, we single out a full subcategory of smooth G-representations which is equivalent to the category of all Gorenstein projective H-modules via the functor of I-invariants. This applies to groups of rational points of split connected reductive groups over finite and over non-Archimedean local fields, thus generalizing a theorem of Cabanes. Moreover, we show that the Gorenstein projective model structure on the category of H-modules admits a right transfer. On the homotopy level, the right derived functor of I-invariants then admits a right inverse and becomes an equivalence when restricted to a suitable subcategory.
Let $C_c^{*}(\mathbb{N}^{2})$ be the universal $C^{*}$-algebra generated by a semigroup of isometries $\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$ whose range projections commute. We analyse the structure of KMS states on $C_{c}^{*}(\mathbb{N}^2)$ for the time evolution determined by a homomorphism $c\,:\,\mathbb{Z}^{2} \to \mathbb{R}$. In contrast to the reduced version $C_{red}^{*}(\mathbb{N}^{2})$, we show that the set of KMS states on $C_{c}^{*}(\mathbb{N}^{2})$ has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.
Let $G_\Gamma \curvearrowright X$ and $G_\Lambda \curvearrowright Y$ be two free measure-preserving actions of one-ended right-angled Artin groups with trivial center on standard probability spaces. Assume they are irreducible, i.e. every element from a standard generating set acts ergodically. We prove that if the two actions are stably orbit equivalent (or merely stably $W^*$-equivalent), then they are automatically conjugate through a group isomorphism between $G_\Gamma$ and $G_\Lambda$. Through work of Monod and Shalom, we derive a superrigidity statement: if the action $G_\Gamma \curvearrowright X$ is stably orbit equivalent (or merely stably $W^*$-equivalent) to a free, measure-preserving, mildly mixing action of a countable group, then the two actions are virtually conjugate. We also use the works of Popa and Ioana, Popa and Vaes to establish the $W^*$-superrigidity of Bernoulli actions of all infinite conjugacy classes groups having a finite generating set made of infinite-order elements where two consecutive elements commute, and one has a nonamenable centralizer: these include one-ended nonabelian right-angled Artin groups, but also many other Artin groups and most mapping class groups of finite-type surfaces.