We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
A natural operation on numerical semigroups is taking a quotient by a positive integer. If $\mathcal {S}$ is a quotient of a numerical semigroup with k generators, we call $\mathcal {S}$ a k-quotient. We give a necessary condition for a given numerical semigroup $\mathcal {S}$ to be a k-quotient and present, for each $k \ge 3$, the first known family of numerical semigroups that cannot be written as a k-quotient. We also examine the probability that a randomly selected numerical semigroup with k generators is a k-quotient.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in $\mathsf {ZF}$, i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.
Let G be a finite transitive group on a set $\Omega $, let $\alpha \in \Omega $, and let $G_{\alpha }$ be the stabilizer of the point $\alpha $ in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of $\Omega $ lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than $5/6$, then each element of $\Omega $ lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound $5/6$.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
In this paper, the nilspace approach to higher-order Fourier analysis is developed in the setting of vector spaces over a prime field $\mathbb {F}_p$, with applications mainly in ergodic theory. A key requisite for this development is to identify a class of nilspaces adequate for this setting. We introduce such a class, whose members we call p-homogeneous nilspaces. One of our main results characterizes these objects in terms of a simple algebraic property. We then prove various further results on these nilspaces, leading to a structure theorem describing every finite p-homogeneous nilspace as the image, under a nilspace fibration, of a member of a simple family of filtered finite abelian p-groups. The applications include a description of the Host–Kra factors of ergodic $\mathbb {F}_p^\omega $-systems as p-homogeneous nilspace systems. This enables the analysis of these factors to be reduced to the study of such nilspace systems, with central questions on the factors thus becoming purely algebraic problems on finite nilspaces. We illustrate this approach by proving that for $k\leq p+1$ the kth Host–Kra factor is an Abramov system of order at most k, extending a result of Bergelson–Tao–Ziegler that holds for $k< p$. We illustrate the utility of p-homogeneous nilspaces also by showing that the structure theorem yields a new proof of the Tao–Ziegler inverse theorem for Gowers norms on $\mathbb {F}_p^n$.
Let G be a simple algebraic group of adjoint type over an algebraically closed field k of bad characteristic. We show that its sheets of conjugacy classes are parametrized by G-conjugacy classes of pairs $(M,{\mathcal O})$ where M is the identity component of the centralizer of a semisimple element in G and ${\mathcal O}$ is a rigid unipotent conjugacy class in M, in analogy with the good characteristic case.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of
$\mathbb {Q}$
and to give a new proof of the vanishing of Massey triple products in Galois cohomology.
For every group G, the set $\mathcal {P}(G)$ of its subsets forms a semiring under set-theoretical union $\cup $ and element-wise multiplication $\cdot $, and forms an involution semigroup under $\cdot $ and element-wise inversion ${}^{-1}$. We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring $(\mathcal {P}(G),\cup ,\cdot )$ nor the involution semigroup $(\mathcal {P}(G),\cdot ,{}^{-1})$ admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
Let D be a division ring and N be a subnormal subgroup of the multiplicative group $D^*$. We show that if N contains a nonabelian solvable subgroup, then N contains a nonabelian free subgroup.
Using Cohen’s classification of symplectic reflection groups, we prove that the parabolic subgroups, that is, stabilizer subgroups, of a finite symplectic reflection group, are themselves symplectic reflection groups. This is the symplectic analog of Steinberg’s Theorem for complex reflection groups.
Using computational results required in the proof, we show the nonexistence of symplectic resolutions for symplectic quotient singularities corresponding to three exceptional symplectic reflection groups, thus reducing further the number of cases for which the existence question remains open.
Another immediate consequence of our result is that the singular locus of the symplectic quotient singularity associated to a symplectic reflection group is pure of codimension two.
We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being hyperbolically embedded. We consider applications to the quasi-isometry and commensurability invariance of acylindrical hyperbolicity of finitely generated groups.
Let G be a finite group. Let
$H, K$
be subgroups of G and
$H \backslash G / K$
the double coset space. If Q is a probability on G which is constant on conjugacy classes (
$Q(s^{-1} t s) = Q(t)$
), then the random walk driven by Q on G projects to a Markov chain on
$H \backslash G /K$
. This allows analysis of the lumped chain using the representation theory of G. Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on
$GL_n(q)$
onto a Markov chain on
$S_n$
via the Bruhat decomposition. The chain on
$S_n$
has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.
An affine variety with an action of a semisimple group G is called “small” if every nontrivial G-orbit in X is isomorphic to the orbit of a highest weight vector. Such a variety X carries a canonical action of the multiplicative group ${\mathbb {K}^{*}}$ commuting with the G-action. We show that X is determined by the ${\mathbb {K}^{*}}$-variety $X^U$ of fixed points under a maximal unipotent subgroup $U \subset G$. Moreover, if X is smooth, then X is a G-vector bundle over the algebraic quotient $X /\!\!/ G$.
If G is of type ${\mathsf {A}_n}$ ($n\geq 2$), ${\mathsf {C}_{n}}$, ${\mathsf {E}_{6}}$, ${\mathsf {E}_{7}}$, or ${\mathsf {E}_{8}}$, we show that all affine G-varieties up to a certain dimension are small. As a consequence, we have the following result. If $n \geq 5$, every smooth affine $\operatorname {\mathrm {SL}}_n$-variety of dimension $< 2n-2$ is an $\operatorname {\mathrm {SL}}_n$-vector bundle over the smooth quotient $X /\!\!/ \operatorname {\mathrm {SL}}_n$, with fiber isomorphic to the natural representation or its dual.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some basic results on meandering-hyperbolic actions and give other examples of such actions.
A group is said to have rational growth with respect to a generating set if the growth series is a rational function. It was shown by Parry that certain torus bundle groups of even trace exhibits rational growth. We generalize this result to a class of torus bundle groups with odd trace.