To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let n be a nonnegative integer. For each composition $\alpha $ of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable $H_n(0)$-module $\mathcal {V}_{\alpha }$ with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study $\mathcal {V}_{\alpha }$s from the homological viewpoint. To be precise, we construct a minimal projective presentation of $\mathcal {V}_{\alpha }$ and a minimal injective presentation of $\mathcal {V}_{\alpha }$ as well. Using them, we compute $\mathrm {Ext}^1_{H_n(0)}(\mathcal {V}_{\alpha }, \mathbf {F}_{\beta })$ and $\mathrm {Ext}^1_{H_n(0)}( \mathbf {F}_{\beta }, \mathcal {V}_{\alpha })$, where $\mathbf {F}_{\beta }$ is the simple $H_n(0)$-module attached to a composition $\beta $ of n. We also compute $\mathrm {Ext}_{H_n(0)}^i(\mathcal {V}_{\alpha },\mathcal {V}_{\beta })$ when $i=0,1$ and $\beta \le _l \alpha $, where $\le _l$ represents the lexicographic order on compositions.
The central kernel$K(G)$ of a group G is the (characteristic) subgroup consisting of all elements $x\in G$ such that $x^{\gamma }=x$ for every central automorphism $\gamma $ of G. We prove that if G is a finite-by-nilpotent group whose central kernel has finite index, then the full automorphism group $Aut(G)$ of G is finite. Some applications of this result are given.
In this paper, we study the supercharacter theories of elementary abelian $p$-groups of order $p^{2}$. We show that the supercharacter theories that arise from the direct product construction and the $\ast$-product construction can be obtained from automorphisms. We also prove that any supercharacter theory of an elementary abelian $p$-group of order $p^{2}$ that has a non-identity superclass of size $1$ or a non-principal linear supercharacter must come from either a $\ast$-product or a direct product. Although we are unable to prove results for general primes, we do compute all of the supercharacter theories when $p = 2,\, 3,\, 5$, and based on these computations along with particular computations for larger primes, we make several conjectures for a general prime $p$.
Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$-order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$, determine whether A and B are similar over $\mathcal {O}_{K}$, and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$. We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
For a given inverse semigroup action on a topological space, one can associate an étale groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the Cartan intermediate subalgebras of a groupoid C*-algebra.
We establish central limit theorems for an action of a group $G$ on a hyperbolic space $X$ with respect to the counting measure on a Cayley graph of $G$. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.
The codegree of an irreducible character $\chi $ of a finite group G is $|G : \ker \chi |/\chi (1)$. We show that the Ree group ${}^2G_2(q)$, where $q = 3^{2f+1}$, is determined up to isomorphism by its set of codegrees.
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/– stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.
If G is a group with subgroup H and m, k are two fixed nonnegative integers, H is called an $(m,k)$-subnormal subgroup of G if it has index at most m in a subnormal subgroup of G of defect less than or equal to k. We study the behaviour of uncountable groups of cardinality $\aleph $ where all subgroups of cardinality $\aleph $ are $(m,k)$-subnormal.
We compute the number of points over finite fields of the character stack associated to a compact surface group and a reductive group with connected centre. We find that the answer is a polynomial on residue classes (PORC). The key ingredients in the proof are Lusztig’s Jordan decomposition of complex characters of finite reductive groups and Deriziotis’s results on their genus numbers. As a consequence of our main theorem, we obtain an expression for the E-polynomial of the character stack.
Gagola and Lewis [‘A character theoretic condition characterizing nilpotent groups’, Comm. Algebra27 (1999), 1053–1056] proved that a finite group G is nilpotent if and only if $\chi (1)^{2}$ divides $\lvert G:\textrm {ker}\,\chi \rvert $ for every irreducible character $\chi $ of G. The theorem was later generalised by using monolithic characters. We generalise the theorem further considering only strongly monolithic characters. We also give some criteria for solvability and nilpotency of finite groups by their strongly monolithic characters.
We extend the Burger–Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of Burger–Mozes universal groups acting on the regular tree $T_{d}$ of degree $d\in \mathbb {N}_{\ge 3}$. Three applications are given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of $\operatorname {\mathrm {Aut}}(T_{d})$ may feature in terms of the group’s local action. In doing so, we explicitly construct closed, nondiscrete, compactly generated subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ with nontrivial quasicentre, and see that the Burger–Mozes theory does not extend further to the transitive case. We then characterize the $(P_{k})$-closures of locally transitive subgroups of $\operatorname {\mathrm {Aut}}(T_{d})$ containing an involutive inversion, and thereby partially answer two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions on finite subtrees’, J. Group Theory18(2) (2015), 235–261]. Finally, we offer a new view on the Weiss conjecture.
We show that the geometric realisation of the poset of proper parabolic subgroups of a large-type Artin group has a systolic geometry. We use this geometry to show that the set of parabolic subgroups of a large-type Artin group is stable under arbitrary intersections and forms a lattice for the inclusion. As an application, we show that parabolic subgroups of large-type Artin groups are stable under taking roots and we completely characterise the parabolic subgroups that are conjugacy stable.
We also use this geometric perspective to recover and unify results describing the normalisers of parabolic subgroups of large-type Artin groups.
How many 2-cells must two finite CW-complexes have to admit a common, but not finite common, covering? Leighton’s theorem says that both complexes must have 2-cells. We construct an almost (?) minimal example with two 2-cells in each complex.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a $3$-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the $K(\unicode{x3c0} \,,1)$-theorem in various finite settings, which includes ADE braid groups.
We state a sufficient condition for a fusion system to be saturated. This is then used to investigate localities with kernels: that is, localities that are (in a particular way) extensions of groups by localities. As an application of these results, we define and study certain products in fusion systems and localities, thus giving a new method to construct saturated subsystems of fusion systems.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed.
This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author’s thesis.