We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups. We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are conjugate.
A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a group G is permutably embedded in G if
$\langle Q,g\rangle $
is quasihamiltonian for each element g of G. It is proved here that if a group G contains a permutably embedded normal subgroup Q such that
$G/Q$
is Černikov, then G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov normal subgroup N such that
$G/N$
is quasihamiltonian. This result should be compared with theorems of Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and its commutator subgroup is Černikov.
In this note, we investigate some products of subgroups and vanishing conjugacy class sizes of finite groups. We prove some supersolubility criteria for groups with restrictions on the vanishing conjugacy class sizes of their subgroups.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of
$n+2$
mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The
$E_7$
,
$E_8$
and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
Let K be an infinite field of characteristic $p>0$ and let $\lambda, \mu$ be partitions, where $\mu$ has two parts. We find sufficient arithmetic conditions on $p, \lambda, \mu$ for the existence of a nonzero homomorphism $\Delta(\lambda) \to \Delta (\mu)$ of Weyl modules for the general linear group $GL_n(K)$. Also, for each p we find sufficient conditions so that the corresponding homomorphism spaces have dimension at least 2.
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a complete answer for both real and complex models. One consequence of our results is that almost sure boundedness of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant theory and castling transforms.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
The Alperin–McKay conjecture is a longstanding open conjecture in the representation theory of finite groups. Späth showed that the Alperin–McKay conjecture holds if the so-called inductive Alperin–McKay (iAM) condition holds for all finite simple groups. In a previous paper, the author has proved that it is enough to verify the inductive condition for quasi-isolated blocks of groups of Lie type. In this paper, we show that the verification of the iAM-condition can be further reduced in many cases to isolated blocks. As a consequence of this, we obtain a proof of the Alperin–McKay conjecture for
$2$
-blocks of finite groups with abelian defect.
Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$
be the character table for
$S_n,$
where the indices
$\lambda $
and
$\mu $
run over the
$p(n)$
many integer partitions of
$n.$
In this note, we study
$Z_{\ell }(n),$
the number of zero entries
$\chi _{\lambda }(\mu )$
in
$\mathcal {C}_n,$
where
$\lambda $
is an
$\ell $
-core partition of
$n.$
For every prime
$\ell \geq 5,$
we prove an asymptotic formula of the form
where
$\sigma _{\ell }(n)$
is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$
and
$1/\alpha _{\ell }>0$
is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$
For primes
$\ell $
and
$n>\ell ^6/24,$
we show that
$\chi _{\lambda }(\mu )=0$
whenever
$\lambda $
and
$\mu $
are both
$\ell $
-cores. Furthermore, if
$Z^*_{\ell }(n)$
is the number of zero entries indexed by two
$\ell $
-cores, then, for
$\ell \geq 5$
, we obtain the asymptotic
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
In Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434), a multiplicity one theorem is proved for general linear groups, orthogonal groups, and unitary groups (
$GL, O,$
and U) over p-adic local fields. That is to say that when we have a pair of such groups
$G_n{\subseteq } G_{n+1}$
, any restriction of an irreducible smooth representation of
$G_{n+1}$
to
$G_n$
is multiplicity-free. This property is already known for
$GL$
over a local field of positive characteristic, and in this paper, we also give a proof for
$O,U$
, and
$SO$
over local fields of positive odd characteristic. These theorems are shown in Gan, Gross, and Prasad (2012, Sur les Conjectures de Gross et Prasad. I, Société Mathématique de France) to imply the uniqueness of Bessel models, and in Chen and Sun (2015, International Mathematics Research Notice 2015, 5849–5873) to imply the uniqueness of Rankin–Selberg models. We also prove simultaneously the uniqueness of Fourier–Jacobi models, following the outlines of the proof in Sun (2012, American Journal of Mathematics 134, 1655–1678).
By the Gelfand–Kazhdan criterion, the multiplicity one property for a pair
$H\leq G$
follows from the statement that any distribution on G invariant to conjugations by H is also invariant to some anti-involution of G preserving H. This statement for
$GL, O$
, and U over p-adic local fields is proved in Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434). An adaptation of the proof for
$GL$
that works over of local fields of positive odd characteristic is given in Mezer (2020, Mathematische Zeitschrift 297, 1383–1396). In this paper, we give similar adaptations of the proofs of the theorems on orthogonal and unitary groups, as well as similar theorems for special orthogonal groups and for symplectic groups. Our methods are a synergy of the methods used over characteristic 0 (Aizenbud et al. [2010, Annals of Mathematics 172, 1407–1434]; Sun [2012, American Journal of Mathematics 134, 1655–1678]; and Waldspurger [2012, Astérisque 346, 313–318]) and of those used in Mezer (2020, Mathematische Zeitschrift 297, 1383–1396).
The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.
We show via
$\ell^2$
-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
We study the
$E_2$
-algebra
$\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$
consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion
$\Omega B\Lambda \mathfrak {M}_{*,1}$
: it is the product of
$\Omega ^{\infty }\mathbf {MTSO}(2)$
with a certain free
$\Omega ^{\infty }$
-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups
$\Gamma _{g,n}$
with
$g\geqslant 0$
and
$n\geqslant 1$
.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
From any two median spaces $X$ and $Y$, we construct a new median space $X \circledast Y$, referred to as the diadem product of $X$ and $Y$, and we show that this construction is compatible with wreath products in the following sense: given two finitely generated groups $G,\,H$ and two (equivariant) coarse embeddings into median spaces $X,\,Y$, there exist a(n equivariant) coarse embedding $G\wr H \to X \circledast Y$. The construction offers a unified point of view on various questions related to the Hilbertian geometry of wreath products of groups.
Roelcke non-precompactness, simplicity, and non-amenability of the automorphism group of the Fraïssé limit of finite Heyting algebras are proved among others.
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations between the corresponding Dehn twists.
We show that every isometric action on a Cantor set is conjugate to an inverse limit of actions on finite sets; and that every faithful isometric action by a finitely generated amenable group is residually finite.