To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
In Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434), a multiplicity one theorem is proved for general linear groups, orthogonal groups, and unitary groups ($GL, O,$ and U) over p-adic local fields. That is to say that when we have a pair of such groups $G_n{\subseteq } G_{n+1}$, any restriction of an irreducible smooth representation of $G_{n+1}$ to $G_n$ is multiplicity-free. This property is already known for $GL$ over a local field of positive characteristic, and in this paper, we also give a proof for $O,U$, and $SO$ over local fields of positive odd characteristic. These theorems are shown in Gan, Gross, and Prasad (2012, Sur les Conjectures de Gross et Prasad. I, Société Mathématique de France) to imply the uniqueness of Bessel models, and in Chen and Sun (2015, International Mathematics Research Notice 2015, 5849–5873) to imply the uniqueness of Rankin–Selberg models. We also prove simultaneously the uniqueness of Fourier–Jacobi models, following the outlines of the proof in Sun (2012, American Journal of Mathematics 134, 1655–1678).
By the Gelfand–Kazhdan criterion, the multiplicity one property for a pair $H\leq G$ follows from the statement that any distribution on G invariant to conjugations by H is also invariant to some anti-involution of G preserving H. This statement for $GL, O$, and U over p-adic local fields is proved in Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434). An adaptation of the proof for $GL$ that works over of local fields of positive odd characteristic is given in Mezer (2020, Mathematische Zeitschrift 297, 1383–1396). In this paper, we give similar adaptations of the proofs of the theorems on orthogonal and unitary groups, as well as similar theorems for special orthogonal groups and for symplectic groups. Our methods are a synergy of the methods used over characteristic 0 (Aizenbud et al. [2010, Annals of Mathematics 172, 1407–1434]; Sun [2012, American Journal of Mathematics 134, 1655–1678]; and Waldspurger [2012, Astérisque 346, 313–318]) and of those used in Mezer (2020, Mathematische Zeitschrift 297, 1383–1396).
The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.
We show via $\ell^2$-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
We study the $E_2$-algebra $\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$ consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion $\Omega B\Lambda \mathfrak {M}_{*,1}$: it is the product of $\Omega ^{\infty }\mathbf {MTSO}(2)$ with a certain free $\Omega ^{\infty }$-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups $\Gamma _{g,n}$ with $g\geqslant 0$ and $n\geqslant 1$.
The automorphism group $\operatorname {Aut}(F_n)$ of the free group $F_n$ acts on a space $A_d(n)$ of Jacobi diagrams of degree d on n oriented arcs. We study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$ by using two actions on the associated graded vector space of $A_d(n)$: an action of the general linear group $\operatorname {GL}(n,\mathbb {Z})$ and an action of the graded Lie algebra $\mathrm {gr}(\operatorname {IA}(n))$ of the IA-automorphism group $\operatorname {IA}(n)$ of $F_n$ associated with its lower central series. We extend the action of $\mathrm {gr}(\operatorname {IA}(n))$ to an action of the associated graded Lie algebra of the Andreadakis filtration of the endomorphism monoid of $F_n$. By using this action, we study the $\operatorname {Aut}(F_n)$-module structure of $A_d(n)$. We obtain an indecomposable decomposition of $A_d(n)$ as $\operatorname {Aut}(F_n)$-modules for $n\geq 2d$. Moreover, we obtain the radical filtration of $A_d(n)$ for $n\geq 2d$ and the socle of $A_3(n)$.
From any two median spaces $X$ and $Y$, we construct a new median space $X \circledast Y$, referred to as the diadem product of $X$ and $Y$, and we show that this construction is compatible with wreath products in the following sense: given two finitely generated groups $G,\,H$ and two (equivariant) coarse embeddings into median spaces $X,\,Y$, there exist a(n equivariant) coarse embedding $G\wr H \to X \circledast Y$. The construction offers a unified point of view on various questions related to the Hilbertian geometry of wreath products of groups.
Roelcke non-precompactness, simplicity, and non-amenability of the automorphism group of the Fraïssé limit of finite Heyting algebras are proved among others.
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations between the corresponding Dehn twists.
We show that every isometric action on a Cantor set is conjugate to an inverse limit of actions on finite sets; and that every faithful isometric action by a finitely generated amenable group is residually finite.
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorised by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length 3 and sphericity 2. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion 3 by generators and relations.
The purpose of this paper is to investigate the properties of spectral and tiling subsets of cyclic groups, with an eye towards the spectral set conjecture [9] in one dimension, which states that a bounded measurable subset of $\mathbb {R}$ accepts an orthogonal basis of exponentials if and only if it tiles $\mathbb {R}$ by translations. This conjecture is strongly connected to its discrete counterpart, namely that, in every finite cyclic group, a subset is spectral if and only if it is a tile. The tools presented herein are refinements of recent ones used in the setting of cyclic groups; the structure of vanishing sums of roots of unity [20] is a prevalent notion throughout the text, as well as the structure of tiling subsets of integers [1]. We manage to prove the conjecture for cyclic groups of order $p^{m}q^{n}$, when one of the exponents is $\leq 6$ or when $p^{m-2}<q^{4}$, and also prove that a tiling subset of a cyclic group of order $p_{1}^{m}p_{2}\dotsm p_{n}$ is spectral.
In this paper we construct an action of the affine Hecke category (in its ‘Soergel bimodules’ incarnation) on the principal block of representations of a simply connected semisimple algebraic group over an algebraically closed field of characteristic bigger than the Coxeter number. This confirms a conjecture of G. Williamson and the second author, and provides a new proof of the tilting character formula in terms of antispherical $p$-Kazhdan–Lusztig polynomials.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
We investigate some properties of complex structures on Lie algebras. In particular, we focus on nilpotent complex structures that are characterised by suitable J-invariant ascending or descending central series, $\mathfrak {d}^{\,j}$ and $\mathfrak {d}_j$, respectively. We introduce a new descending series $\mathfrak {p}_j$ and use it to prove a new characterisation of nilpotent complex structures. We also examine whether nilpotent complex structures on stratified Lie algebras preserve the strata. We find that there exists a J-invariant stratification on a step $2$ nilpotent Lie algebra with a complex structure.
We prove that for any transitive subshift X with word complexity function $c_n(X)$, if $\liminf ({\log (c_n(X)/n)}/({\log \log \log n})) = 0$, then the quotient group ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ of the automorphism group of X by the subgroup generated by the shift $\sigma $ is locally finite. We prove that significantly weaker upper bounds on $c_n(X)$ imply the same conclusion if the gap conjecture from geometric group theory is true. Our proofs rely on a general upper bound for the number of automorphisms of X of range n in terms of word complexity, which may be of independent interest. As an application, we are also able to prove that for any subshift X, if ${c_n(X)}/{n^2 (\log n)^{-1}} \rightarrow 0$, then $\mathrm {Aut}(X,\sigma )$ is amenable, improving a result of Cyr and Kra. In the opposite direction, we show that for any countable infinite locally finite group G and any unbounded increasing $f: \mathbb {N} \rightarrow \mathbb {N}$, there exists a minimal subshift X with ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ isomorphic to G and ${c_n(X)}/{nf(n)} \rightarrow 0$.
A connected, locally finite graph $\Gamma $ is a Cayley–Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on $\Gamma $ with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if $T_{d}$ denotes the d-regular tree, then the minimal degree of $\mathrm{Aut}(T_{d})$ is d for all $d\geq 2$.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.