To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An affine variety with an action of a semisimple group G is called “small” if every nontrivial G-orbit in X is isomorphic to the orbit of a highest weight vector. Such a variety X carries a canonical action of the multiplicative group ${\mathbb {K}^{*}}$ commuting with the G-action. We show that X is determined by the ${\mathbb {K}^{*}}$-variety $X^U$ of fixed points under a maximal unipotent subgroup $U \subset G$. Moreover, if X is smooth, then X is a G-vector bundle over the algebraic quotient $X /\!\!/ G$.
If G is of type ${\mathsf {A}_n}$ ($n\geq 2$), ${\mathsf {C}_{n}}$, ${\mathsf {E}_{6}}$, ${\mathsf {E}_{7}}$, or ${\mathsf {E}_{8}}$, we show that all affine G-varieties up to a certain dimension are small. As a consequence, we have the following result. If $n \geq 5$, every smooth affine $\operatorname {\mathrm {SL}}_n$-variety of dimension $< 2n-2$ is an $\operatorname {\mathrm {SL}}_n$-vector bundle over the smooth quotient $X /\!\!/ \operatorname {\mathrm {SL}}_n$, with fiber isomorphic to the natural representation or its dual.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some basic results on meandering-hyperbolic actions and give other examples of such actions.
A group is said to have rational growth with respect to a generating set if the growth series is a rational function. It was shown by Parry that certain torus bundle groups of even trace exhibits rational growth. We generalize this result to a class of torus bundle groups with odd trace.
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: ${\mathfrak{A}}_5$, ${\text{PSL}}_2(\textbf{F}_7)$, ${\mathfrak{A}}_6$, ${\text{SL}}_2(\textbf{F}_8)$, ${\mathfrak{A}}_7$, ${\text{PSp}}_4(\textbf{F}_3)$, ${\text{SL}}_2(\textbf{F}_{7})$, $2.{\mathfrak{A}}_5$, $2.{\mathfrak{A}}_6$, $3.{\mathfrak{A}}_6$ or $6.{\mathfrak{A}}_6$. All of these groups with a possible exception of $2.{\mathfrak{A}}_6$ and $6.{\mathfrak{A}}_6$ indeed act on some rationally connected threefolds.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
In their renowned paper (2011, Inventiones Mathematicae 184, 591–627), I. Vollaard and T. Wedhorn defined a stratification on the special fiber of the unitary unramified PEL Rapoport–Zink space with signature $(1,n-1)$. They constructed an isomorphism between the closure of a stratum, called a closed Bruhat–Tits stratum, and a Deligne–Lusztig variety which is not of classical type. In this paper, we describe the $\ell $-adic cohomology groups over $\overline {{\mathbb Q}_{\ell }}$ of these Deligne–Lusztig varieties, where $\ell \not = p$. The computations involve the spectral sequence associated with the Ekedahl–Oort stratification of a closed Bruhat–Tits stratum, which translates into a stratification by Coxeter varieties whose cohomology is known. Eventually, we find out that the irreducible representations of the finite unitary group which appear inside the cohomology contribute to only two different unipotent Harish-Chandra series, one of them belonging to the principal series.
We study the following decision problem: given an exponential equation $a_1g_1^{x_1}a_2g_2^{x_2}\dots a_ng_n^{x_n}=1$ over a recursively presented group G, decide if it has a solution with all $x_i$ in $\mathbb {Z}$. We construct a finitely presented group G where this problem is decidable for equations with one variable and is undecidable for equations with two variables. We also study functions estimating possible solutions of such an equation through the lengths of its coefficients with respect to a given generating set of G. Another result concerns Turing degrees of some natural fragments of the above problem.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.
A semigroup S is said to be right pseudo-finite if the universal right congruence can be generated by a finite set $U\subseteq S\times S$, and there is a bound on the length of derivations for an arbitrary pair $(s,t)\in S\times S$ as a consequence of those in U. This article explores the existence and nature of a minimal ideal in a right pseudo-finite semigroup. Continuing the theme started in an earlier work by Dandan et al., we show that in several natural classes of monoids, right pseudo-finiteness implies the existence of a completely simple minimal ideal. This is the case for orthodox monoids, completely regular monoids, and right reversible monoids, which include all commutative monoids. We also show that certain other conditions imply the existence of a minimal ideal, which need not be completely simple; notably, this is the case for semigroups in which one of the Green’s preorders ${\leq _{\mathcal {L}}}$ or ${\leq _{\mathcal {J}}}$ is left compatible with multiplication. Finally, we establish a number of examples of pseudo-finite monoids without a minimal ideal. We develop an explicit construction that yields such examples with additional desired properties, for instance, regularity or ${\mathcal {J}}$-triviality.
We show that any set of distinct homotopy classes of simple closed curves on the torus that pairwise intersect at most k times has size $k+O(\sqrt k \log k)$. Prior to this work, a lemma of Agol, together with the state of the art bounds for the size of prime gaps, implied the error term $O(k^{21/40})$, and in fact the assumption of the Riemann hypothesis improved this error term to the one we obtain $O(\sqrt k\log k)$. By contrast, our methods are elementary, combinatorial, and geometric.
The higher-dimensional Thompson groups $nV$, for $n \geqslant 2$, were introduced by Brin [‘Presentations of higher dimensional Thompson groups’, J. Algebra284 (2005), 520–558]. We provide new presentations for each of these infinite simple groups. The first is an infinite presentation, analogous to the Coxeter presentation for the finite symmetric group, with generating set equal to the set of transpositions in $nV$ and reflecting the self-similar structure of n-dimensional Cantor space. We then exploit this infinite presentation to produce further finite presentations that are considerably smaller than those previously known.
The main result includes as special cases on the one hand, the Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche and Thom (2022) and, on the other hand, the Brodskii–Howie–Short theorem (1980–1984) generalising Magnus’s Freiheitssatz (1930).
Motivated by the desire to understand the geometry of the basic loci in the reduction of Shimura varieties, we study their “group-theoretic models”—generalized affine Deligne–Lusztig varieties—in cases where they have a particularly nice description. Continuing the work of Görtz and He (2015, Cambridge Journal of Mathematics 3, 323–353) and Görtz, He, and Nie (2019, Peking Mathematical Journal 2, 99–154), we single out the class of cases of Coxeter type, give a characterization in terms of the dimension, and obtain a complete classification. We also discuss known, new, and open cases from the point of view of Shimura varieties/Rapoport–Zink spaces.
Let n be a nonnegative integer. For each composition $\alpha $ of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable $H_n(0)$-module $\mathcal {V}_{\alpha }$ with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study $\mathcal {V}_{\alpha }$s from the homological viewpoint. To be precise, we construct a minimal projective presentation of $\mathcal {V}_{\alpha }$ and a minimal injective presentation of $\mathcal {V}_{\alpha }$ as well. Using them, we compute $\mathrm {Ext}^1_{H_n(0)}(\mathcal {V}_{\alpha }, \mathbf {F}_{\beta })$ and $\mathrm {Ext}^1_{H_n(0)}( \mathbf {F}_{\beta }, \mathcal {V}_{\alpha })$, where $\mathbf {F}_{\beta }$ is the simple $H_n(0)$-module attached to a composition $\beta $ of n. We also compute $\mathrm {Ext}_{H_n(0)}^i(\mathcal {V}_{\alpha },\mathcal {V}_{\beta })$ when $i=0,1$ and $\beta \le _l \alpha $, where $\le _l$ represents the lexicographic order on compositions.
The central kernel$K(G)$ of a group G is the (characteristic) subgroup consisting of all elements $x\in G$ such that $x^{\gamma }=x$ for every central automorphism $\gamma $ of G. We prove that if G is a finite-by-nilpotent group whose central kernel has finite index, then the full automorphism group $Aut(G)$ of G is finite. Some applications of this result are given.
In this paper, we study the supercharacter theories of elementary abelian $p$-groups of order $p^{2}$. We show that the supercharacter theories that arise from the direct product construction and the $\ast$-product construction can be obtained from automorphisms. We also prove that any supercharacter theory of an elementary abelian $p$-group of order $p^{2}$ that has a non-identity superclass of size $1$ or a non-principal linear supercharacter must come from either a $\ast$-product or a direct product. Although we are unable to prove results for general primes, we do compute all of the supercharacter theories when $p = 2,\, 3,\, 5$, and based on these computations along with particular computations for larger primes, we make several conjectures for a general prime $p$.
Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$-order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$, determine whether A and B are similar over $\mathcal {O}_{K}$, and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$. We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.