To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a family of counterexamples to a question proposed recently by Moretó concerning the character codegrees and the element orders of a finite solvable group.
In this article, we generalize Haglund and Wise’s theory of special cube complexes to groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median graphs, and we show that a group which acts specially on a quasi-median graph with finitely many orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-stabilizers. In the second part of the article, we apply the theory to fundamental groups of some graphs of groups called right-angled graphs of groups.
The cusped hyperbolic n-orbifolds of minimal volume are well known for $n\leq 9$. Their fundamental groups are related to the Coxeter n-simplex groups $\Gamma _{n}$. In this work, we prove that $\Gamma _{n}$ has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in $\textrm{Isom}\mathbb H^{n}$. In this way, we extend previous results of Floyd for $n=2$ and of Kellerhals for $n=3$, respectively. Our proof is a generalization of the methods developed together with Kellerhals for the cocompact case.
The ring $\mathbb Z_{d}$ of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree $T_{d}$. Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz mappings from $\mathbb Z_{d}$ to itself. In the case when $d=p$ is prime, Anashin [‘Automata finiteness criterion in terms of van der Put series of automata functions’,p-Adic Numbers Ultrametric Anal. Appl.4(2) (2012), 151–160] showed that $f\in \mathrm {Lip}^{1}(\mathbb Z_{p})$ is defined by a finite Mealy automaton if and only if the reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of $\mathbb Z_{p}\cap \mathbb Q$. We generalize this result to arbitrary integers $d\geq 2$ and describe the explicit connection between the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of the generators of the lamplighter group acting on the binary rooted tree.
We investigate quantitative aspects of the locally embeddable into finite groups (LEF) property for subgroups of the topological full group of a two-sided minimal subshift over a finite alphabet, measured via the LEF growth function. We show that the LEF growth of may be bounded from above and below in terms of the recurrence function and the complexity function of the subshift, respectively. As an application, we construct groups of previously unseen LEF growth types, and exhibit a continuum of finitely generated LEF groups which may be distinguished from one another by their LEF growth.
In this paper we give a complete description of the Bieri–Neumann–Strebel–Renz invariants of the Lodha–Moore groups. The second author previously computed the first two invariants, and here we show that all the higher invariants coincide with the second one, which finishes the complete computation. As a consequence, we present a complete picture of the finiteness properties of normal subgroups of the first Lodha–Moore group. In particular, we show that every finitely presented normal subgroup of the group is of type $\textrm{F}_\infty$, answering a question posed in Oberwolfach in 2018. The proof involves applying a variation of Bestvina–Brady discrete Morse theory to the so called cluster complex X introduced by the first author. As an application, we also demonstrate that a certain simple group S previously constructed by the first author is of type $\textrm{F}_\infty$. This provides the first example of a type $\textrm{F}_\infty$ simple group that acts faithfully on the circle by homeomorphisms, but does not admit any nontrivial action by $C^1$-diffeomorphisms, nor by piecewise linear homeomorphisms, on any 1-manifold.
This is the second of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this second paper, we restrict our attention to non-spectrally degenerate random walks and we prove precise asymptotics of the probability $p_n(e,e)$ of going back to the origin at time $n$. We combine techniques adapted from thermodynamic formalism with the rough estimates of the Green function given by part I to show that $p_n(e,e)\sim CR^{-n}n^{-3/2}$, where $R$ is the inverse of the spectral radius of the random walk. This both generalizes results of Woess for free products and results of Gouëzel for hyperbolic groups.
The Grothendieck–Serre conjecture predicts that every generically trivial torsor under a reductive group scheme G over a regular local ring R is trivial. We settle it in the case when G is quasi-split and R is unramified. Some of the techniques that allow us to overcome obstacles that have so far kept the mixed characteristic case out of reach include a version of Noether normalization over discrete valuation rings, as well as a suitable presentation lemma for smooth relative curves in mixed characteristic that facilitates passage to the relative affine line via excision and patching.
Let $\eta (G)$ be the number of conjugacy classes of maximal cyclic subgroups of G. We prove that if G is a p-group of order $p^n$ and nilpotence class l, then $\eta (G)$ is bounded below by a linear function in $n/l$.
We construct examples of quasi-isometric embeddings of word hyperbolic groups into $\mathsf {SL}(d,\mathbb {R})$ for $d \geq 4$ which are not limits of Anosov representations into $\mathsf {SL}(d,\mathbb {R})$. As a consequence, we conclude that an analogue of the density theorem for $\mathsf {PSL}(2,\mathbb {C})$ does not hold for $\mathsf {SL}(d,\mathbb {R})$ when $d \geq 4$.
For a subring $R$ of the rational numbers, we study $R$-localization functors in the local homotopy theory of simplicial presheaves on a small site and then in ${\mathbb {A}}^1$-homotopy theory. To this end, we introduce and analyze two notions of nilpotence for spaces in ${\mathbb {A}}^1$-homotopy theory, paying attention to future applications for vector bundles. We show that $R$-localization behaves in a controlled fashion for the nilpotent spaces we consider. We show that the classifying space $BGL_n$ is ${\mathbb {A}}^1$-nilpotent when $n$ is odd, and analyze the (more complicated) situation where $n$ is even as well. We establish analogs of various classical results about rationalization in the context of ${\mathbb {A}}^1$-homotopy theory: if $-1$ is a sum of squares in the base field, ${\mathbb {A}}^n \,{\setminus}\, 0$ is rationally equivalent to a suitable motivic Eilenberg–Mac Lane space, and the special linear group decomposes as a product of motivic spheres.
We study reductive subgroups H of a reductive linear algebraic group G – possibly nonconnected – such that H contains a regular unipotent element of G. We show that under suitable hypotheses, such subgroups are G-irreducible in the sense of Serre. This generalises results of Malle, Testerman and Zalesski. We obtain analogous results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.
The k-gonal models of random groups are defined as the quotients of free groups on n generators by cyclically reduced words of length k. As k tends to infinity, this model approaches the Gromov density model. In this paper, we show that for any fixed $d_0 \in (0, 1)$, if positive k-gonal random groups satisfy Property (T) with overwhelming probability for densities $d >d_0$, then so do jk-gonal random groups, for any $j \in \mathbb{N}$. In particular, this shows that for densities above 1/3, groups in 3k-gonal models satisfy Property (T) with probability 1 as n approaches infinity.
Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size.
We discuss several ways of packing a hyperbolic surface with circles (of either varying radii or all being congruent) or horocycles, and note down some observations related to their symmetries (or the absence thereof).
In this paper, we consider the $T$- and $V$-versions, ${T_\tau }$ and ${V_\tau }$, of the irrational slope Thompson group ${F_\tau }$ considered in J. Burillo, B. Nucinkis and L. Reeves [An irrational-slope Thompson's group, Publ. Mat. 65 (2021), 809–839]. We give infinite presentations for these groups and show how they can be represented by tree-pair diagrams similar to those for $T$ and $V$. We also show that ${T_\tau }$ and ${V_\tau }$ have index-$2$ normal subgroups, unlike their original Thompson counterparts $T$ and $V$. These index-$2$ subgroups are shown to be simple.
We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric spaces.
Let $G= SL_{n+1}$ be defined over an algebraically closed field of characteristic $p > 2$. For each $n \geq 1$, there exists a singular block in the category of $G_1$-modules, which contains precisely $n+1$ irreducible modules. We are interested in the ‘lift’ of this block to the category of $G_1T$-modules. Imposing only mild assumptions on $p$, we will perform a number of calculations in this setting, including a complete determination of the Loewy series for the baby Verma modules and all possible extensions between the irreducible modules. In the case where $p$ is extremely large, we will also explicitly compute the Loewy series for the indecomposable projective modules.
Let $\pi $ be a set of primes. We say that a group G satisfies $D_{\pi }$ if G possesses a Hall $\pi $-subgroup H and every $\pi $-subgroup of G is contained in a conjugate of H. We give a new $D_{\pi }$-criterion following Wielandt’s idea, which is a generalisation of Wielandt’s and Rusakov’s results.