To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A group is $\frac 32$-generated if every non-trivial element is part of a generating pair. In 2019, Donoven and Harper showed that many Thompson groups are $\frac 32$-generated and posed five questions. The first of these is whether there exists a 2-generated group with every proper quotient cyclic that is not $\frac 32$-generated. This is a natural question given the significant work in proving that no finite group has this property, but we show that there is such an infinite group. The groups we consider are a family of finite index subgroups $G_1,\, G_2,\, \ldots$ of the Houghton group $\operatorname {FSym}(\mathbb {Z})\rtimes \mathbb {Z}$. We then show that $G_1$ and $G_2$ are $\frac 32$-generated and investigate the related notion of spread for these groups. We are able to show that they have finite spread at least 2. These are, therefore, the first infinite groups to be shown to have finite positive spread, and the first to be shown to have spread at least 2 (other than $\mathbb {Z}$ and the Tarski monsters, which have infinite spread). As a consequence, for each $k\in \{2,\, 3,\, \ldots \}$, we also have that $G_{2k}$ is index $k$ in $G_2$ but $G_2$ is $\frac 32$-generated whereas $G_{2k}$ is not.
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$, the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
In this paper we consider two piecewise Riemannian metrics defined on the Culler–Vogtmann outer space which we call the entropy metric and the pressure metric. As a result of work of McMullen, these metrics can be seen as analogs of the Weil–Petersson metric on the Teichmüller space of a closed surface. We show that while the geometric analysis of these metrics is similar to that of the Weil–Petersson metric, from the point of view of geometric group theory, these metrics behave very differently than the Weil–Petersson metric. Specifically, we show that when the rank r is at least 4, the action of $\operatorname {\mathrm {Out}}(\mathbb {F}_r)$ on the completion of the Culler–Vogtmann outer space using the entropy metric has a fixed point. A similar statement also holds for the pressure metric.
If G is permutation group acting on a finite set $\Omega $, then this action induces a natural action of G on the power set $\mathscr{P}(\Omega )$. The number $s(G)$ of orbits in this action is an important parameter that has been used in bounding numbers of conjugacy classes in finite groups. In this context, $\inf ({\log _2 s(G)}/{\log _2 |G|})$ plays a role, but the precise value of this constant was unknown. We determine it where G runs over all permutation groups not containing any ${{\textrm {A}}}_l, l> 4$, as a composition factor.
A noncomplete graph is $2$-distance-transitive if, for $i \in \{1,2\}$ and for any two vertex pairs $(u_1,v_1)$ and $(u_2,v_2)$ with the same distance i in the graph, there exists an element of the graph automorphism group that maps $(u_1,v_1)$ to $(u_2,v_2)$. This paper determines the family of $2$-distance-transitive Cayley graphs over dihedral groups, and it is shown that if the girth of such a graph is not $4$, then either it is a known $2$-arc-transitive graph or it is isomorphic to one of the following two graphs: $ {\mathrm {K}}_{x[y]}$, where $x\geq 3,y\geq 2$, and $G(2,p,({p-1})/{4})$, where p is a prime and $p \equiv 1 \ (\operatorname {mod}\, 8)$. Then, as an application of the above result, a complete classification is achieved of the family of $2$-geodesic-transitive Cayley graphs for dihedral groups.
A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and $\dim G=\dim V$. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions.
We show that the automorphism groups of right-angled Artin groups whose defining graphs have at least three vertices are not relatively hyperbolic. We then show that the outer automorphism groups are also not relatively hyperbolic, except for a few exceptional cases. In these cases, the outer automorphism groups are virtually isomorphic to either a finite group, an infinite cyclic group or $\mathrm {GL}_2(\mathbb {Z})$.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
Let G be a $\sigma $-finite abelian group, i.e., $G=\bigcup _{n\geq 1} G_n$ where $(G_n)_{n\geq 1}$ is a nondecreasing sequence of finite subgroups. For any $A\subset G$, let $\underline {\mathrm {d}}( A ):=\liminf _{n\to \infty }\frac {|A\cap G_n|}{|G_n|}$ be its lower asymptotic density. We show that for any subsets A and B of G, whenever $\underline {\mathrm {d}}( A+B )<\underline {\mathrm {d}}( A )+\underline {\mathrm {d}}( B )$, the sumset $A+B$ must be periodic, that is, a union of translates of a subgroup $H\leq G$ of finite index. This is exactly analogous to Kneser’s theorem regarding the density of infinite sets of integers. Further, we show similar statements for the upper asymptotic density in the case where $A=\pm B$. An analagous statement had already been proven by Griesmer in the very general context of countable abelian groups, but the present paper provides a much simpler argument specifically tailored for the setting of $\sigma $-finite abelian groups. This argument relies on an appeal to another theorem of Kneser, namely the one regarding finite sumsets in an abelian group.
No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than $4$, there are infinitely many groups with exactly k nonpower subgroups.
We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$.
Given groups $A$ and $B$, what is the minimal commutator length of the 2020th (for instance) power of an element $g\in A*B$ not conjugate to elements of the free factors? The exhaustive answer to this question is still unknown, but we can give an almost answer: this minimum is one of two numbers (simply depending on $A$ and $B$). Other similar problems are also considered.
We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán. This proof allows the possibility that the elements of F are represented by tuples in $H(F)$ of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of F represented by triples in $H(F)$. Looking at what was used to arrive at this parameter-free interpretation of F in $H(F)$, we give general conditions sufficient to eliminate parameters from interpretations.
Let $G$ be a primitive permutation group of degree $n$ with nonabelian socle, and let $k(G)$ be the number of conjugacy classes of $G$. We prove that either $k(G)< n/2$ and $k(G)=o(n)$ as $n\rightarrow \infty$, or $G$ belongs to explicit families of examples.
We study the free metabelian group $M(2,n)$ of prime power exponent n on two generators by means of invariants $M(2,n)'\to \mathbb {Z}_n$ that we construct from colorings of the squares in the integer grid $\mathbb {R} \times \mathbb {Z} \cup \mathbb {Z} \times \mathbb {R}$. In particular, we improve bounds found by Newman for the order of $M(2,2^k)$. We study identities in $M(2,n)$, which give information about identities in the Burnside group $B(2,n)$ and the restricted Burnside group $R(2,n)$.
We show that the Specht ideal of a two-rowed partition is perfect over an arbitrary field, provided that the characteristic is either zero or bounded below by the size of the second row of the partition, and we show this lower bound is tight. We also establish perfection and other properties of certain variants of Specht ideals, and find a surprising connection to the weak Lefschetz property. Our results, in particular, give a self-contained proof of Cohen–Macaulayness of certain h-equals sets, a result previously obtained by Etingof–Gorsky–Losev over the complex numbers using rational Cherednik algebras.
Let G be a simple complex algebraic group, and let $K \subset G$ be a reductive subgroup such that the coordinate ring of $G/K$ is a multiplicity-free G-module. We consider the G-algebra structure of $\mathbb C[G/K]$ and study the decomposition into irreducible summands of the product of irreducible G-submodules in $\mathbb C[G/K]$. When the spherical roots of $G/K$ generate a root system of type $\mathsf A$, we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of $G/K$ is a direct sum of subsystems of rank 1.
We study the number of ways of factoring elements in the complex reflection groups$G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in$G(r,s,n)$ to those in the symmetric group$S_n$, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in$G(r,s,n)$.
Let $m\leqslant n\in \mathbb {N}$, and $G\leqslant \operatorname {Sym}(m)$ and $H\leqslant \operatorname {Sym}(n)$. In this article, we find conditions enabling embeddings between the symmetric R. Thompson groups ${V_m(G)}$ and ${V_n(H)}$. When $n\equiv 1 \mod (m-1)$, and under some other technical conditions, we find an embedding of ${V_n(H)}$ into ${V_m(G)}$ via topological conjugation. With the same modular condition, we also generalize a purely algebraic construction of Birget from 2019 to find a group $H\leqslant \operatorname {Sym}(n)$ and an embedding of ${V_m(G)}$ into ${V_n(H)}$.