To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the automorphism groups of right-angled Artin groups whose defining graphs have at least three vertices are not relatively hyperbolic. We then show that the outer automorphism groups are also not relatively hyperbolic, except for a few exceptional cases. In these cases, the outer automorphism groups are virtually isomorphic to either a finite group, an infinite cyclic group or $\mathrm {GL}_2(\mathbb {Z})$.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
Let G be a $\sigma $-finite abelian group, i.e., $G=\bigcup _{n\geq 1} G_n$ where $(G_n)_{n\geq 1}$ is a nondecreasing sequence of finite subgroups. For any $A\subset G$, let $\underline {\mathrm {d}}( A ):=\liminf _{n\to \infty }\frac {|A\cap G_n|}{|G_n|}$ be its lower asymptotic density. We show that for any subsets A and B of G, whenever $\underline {\mathrm {d}}( A+B )<\underline {\mathrm {d}}( A )+\underline {\mathrm {d}}( B )$, the sumset $A+B$ must be periodic, that is, a union of translates of a subgroup $H\leq G$ of finite index. This is exactly analogous to Kneser’s theorem regarding the density of infinite sets of integers. Further, we show similar statements for the upper asymptotic density in the case where $A=\pm B$. An analagous statement had already been proven by Griesmer in the very general context of countable abelian groups, but the present paper provides a much simpler argument specifically tailored for the setting of $\sigma $-finite abelian groups. This argument relies on an appeal to another theorem of Kneser, namely the one regarding finite sumsets in an abelian group.
No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than $4$, there are infinitely many groups with exactly k nonpower subgroups.
We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$.
Given groups $A$ and $B$, what is the minimal commutator length of the 2020th (for instance) power of an element $g\in A*B$ not conjugate to elements of the free factors? The exhaustive answer to this question is still unknown, but we can give an almost answer: this minimum is one of two numbers (simply depending on $A$ and $B$). Other similar problems are also considered.
We improve on and generalize a 1960 result of Maltsev. For a field F, we denote by $H(F)$ the Heisenberg group with entries in F. Maltsev showed that there is a copy of F defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair of elements as parameters. We show that F is interpreted in $H(F)$ using computable $\Sigma _1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán. This proof allows the possibility that the elements of F are represented by tuples in $H(F)$ of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of F represented by triples in $H(F)$. Looking at what was used to arrive at this parameter-free interpretation of F in $H(F)$, we give general conditions sufficient to eliminate parameters from interpretations.
Let $G$ be a primitive permutation group of degree $n$ with nonabelian socle, and let $k(G)$ be the number of conjugacy classes of $G$. We prove that either $k(G)< n/2$ and $k(G)=o(n)$ as $n\rightarrow \infty$, or $G$ belongs to explicit families of examples.
We study the free metabelian group $M(2,n)$ of prime power exponent n on two generators by means of invariants $M(2,n)'\to \mathbb {Z}_n$ that we construct from colorings of the squares in the integer grid $\mathbb {R} \times \mathbb {Z} \cup \mathbb {Z} \times \mathbb {R}$. In particular, we improve bounds found by Newman for the order of $M(2,2^k)$. We study identities in $M(2,n)$, which give information about identities in the Burnside group $B(2,n)$ and the restricted Burnside group $R(2,n)$.
We show that the Specht ideal of a two-rowed partition is perfect over an arbitrary field, provided that the characteristic is either zero or bounded below by the size of the second row of the partition, and we show this lower bound is tight. We also establish perfection and other properties of certain variants of Specht ideals, and find a surprising connection to the weak Lefschetz property. Our results, in particular, give a self-contained proof of Cohen–Macaulayness of certain h-equals sets, a result previously obtained by Etingof–Gorsky–Losev over the complex numbers using rational Cherednik algebras.
Let G be a simple complex algebraic group, and let $K \subset G$ be a reductive subgroup such that the coordinate ring of $G/K$ is a multiplicity-free G-module. We consider the G-algebra structure of $\mathbb C[G/K]$ and study the decomposition into irreducible summands of the product of irreducible G-submodules in $\mathbb C[G/K]$. When the spherical roots of $G/K$ generate a root system of type $\mathsf A$, we propose a conjectural decomposition rule, which relies on a conjecture of Stanley on the multiplication of Jack symmetric functions. With the exception of one case, we show that the rule holds true whenever the root system generated by the spherical roots of $G/K$ is a direct sum of subsystems of rank 1.
We study the number of ways of factoring elements in the complex reflection groups$G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in$G(r,s,n)$ to those in the symmetric group$S_n$, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in$G(r,s,n)$.
Let $m\leqslant n\in \mathbb {N}$, and $G\leqslant \operatorname {Sym}(m)$ and $H\leqslant \operatorname {Sym}(n)$. In this article, we find conditions enabling embeddings between the symmetric R. Thompson groups ${V_m(G)}$ and ${V_n(H)}$. When $n\equiv 1 \mod (m-1)$, and under some other technical conditions, we find an embedding of ${V_n(H)}$ into ${V_m(G)}$ via topological conjugation. With the same modular condition, we also generalize a purely algebraic construction of Birget from 2019 to find a group $H\leqslant \operatorname {Sym}(n)$ and an embedding of ${V_m(G)}$ into ${V_n(H)}$.
Given an integer $g>2$, we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.
Let $F$ be a non-archimedean local field of residual characteristic $p \neq 2$. Let $G$ be a (connected) reductive group over $F$ that splits over a tamely ramified field extension of $F$. We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.
We fix an error on a $3$-cocycle in the original version of the paper ‘Endoscopy for Hecke categories, character sheaves and representations’. We give the corrected statements of the main results.
A classical theorem of Frucht states that any finite group appears as the automorphism group of a finite graph. In the quantum setting, the problem is to understand the structure of the compact quantum groups which can appear as quantum automorphism groups of finite graphs. We discuss here this question, notably with a number of negative results.
We prove that the structure group of any Albert algebra over an arbitrary field is R-trivial. This implies the Tits–Weiss conjecture for Albert algebras and the Kneser–Tits conjecture for isotropic groups of type $\mathrm {E}_{7,1}^{78}, \mathrm {E}_{8,2}^{78}$. As a further corollary, we show that some standard conjectures on the groups of R-equivalence classes in algebraic groups and the norm principle are true for strongly inner forms of type $^1\mathrm {E}_6$.
Let $K$ be a subgroup of a finite group $G$. The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$. Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$. We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$-bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$. We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$-bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$, or a Sylow subgroup, etc.