To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$, where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
To each automorphism of a spherical building, there is a naturally associated opposition diagram, which encodes the types of the simplices of the building that are mapped onto opposite simplices. If no chamber (that is, no maximal simplex) of the building is mapped onto an opposite chamber, then the automorphism is called domestic. In this paper, we give the complete classification of domestic automorphisms of split spherical buildings of types $\mathsf {E}_6$, $\mathsf {F}_4$, and $\mathsf {G}_2$. Moreover, for all split spherical buildings of exceptional type, we classify (i) the domestic homologies, (ii) the opposition diagrams arising from elements of the standard unipotent subgroup of the Chevalley group, and (iii) the automorphisms with opposition diagrams with at most two distinguished orbits encircled. Our results provide unexpected characterizations of long root elations and products of perpendicular long root elations in long root geometries, and analogues of the density theorem for connected linear algebraic groups in the setting of Chevalley groups over arbitrary fields.
Let G be a connected reductive group over a p-adic number field F. We propose and study the notions of G-$\varphi $-modules and G-$(\varphi ,\nabla )$-modules over the Robba ring, which are exact faithful F-linear tensor functors from the category of G-representations on finite-dimensional F-vector spaces to the categories of $\varphi $-modules and $(\varphi ,\nabla )$-modules over the Robba ring, respectively, commuting with the respective fiber functors. We study Kedlaya’s slope filtration theorem in this context, and show that G-$(\varphi ,\nabla )$-modules over the Robba ring are “G-quasi-unipotent,” which is a generalization of the p-adic local monodromy theorem proved independently by Y. André, K. S. Kedlaya, and Z. Mebkhout.
Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a continuous representation $\theta \colon G\to \mathrm {GL}_1(\mathbb {Z}_p)$ such that every open subgroup H of G, together with the restriction $\theta \vert _H$, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups of fields. Finally, we ask whether 1-smooth pro-p groups satisfy a “Tits’ alternative.”
For any (Hausdorff) compact group G, denote by $\mathrm{cp}(G)$ the probability that a randomly chosen pair of elements of G commute. We prove that there exists a finite group H such that $\mathrm{cp}(G)= {\mathrm{cp}(H)}/{|G:F|^2}$, where F is the FC-centre of G and H is isoclinic to F with $\mathrm{cp}(F)=\mathrm{cp}(H)$ whenever $\mathrm{cp}(G)>0$. In addition, we prove that a compact group G with $\mathrm{cp}(G)>\tfrac {3}{40}$ is either solvable or isomorphic to $A_5 \times Z(G)$, where $A_5$ denotes the alternating group of degree five and the centre $Z(G)$ of G contains the identity component of G.
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
A subgroup H of a group G is said to be contranormal in G if the normal closure of H in G is equal to G. In this paper, we consider groups whose nonmodular subgroups (of infinite rank) are contranormal.
In this paper, we study the relation of the size of the class two quotients of a linear group and the size of the vector space. We answer a question raised in Keller and Yang [Class 2 quotients of solvable linear groups, J. Algebra 509 (2018), 386-396].
L'analyse de la démonstration par contradiction de Frécon 2018 qui est faite dans Poizat 2018 met en évidence la structure symétrique des groupes de rang de Morley fini sans involutions; en effet, cette démonstration consiste en la construction d'un espace symétrique de dimension deux (“un plan”), puis à montrer que ce plan ne peut exister.
Aux sous-espaces symétriques définissables de ces groupes sont associées des symétries et des transvexions, qu'on entreprend d'étudier ici dans l'abstrait, sans référence à un groupe qui les enveloppe; cela nous mène à considérer des structures introduites axiomatiquement que nous appelons symétrons (plutôt qu'ensembles symétriques diadiques, comme les ont nommées Lawson & Lim 2004).
Le $Z^*$-Theorem de Glauberman permet d'élucider complètement la structure des symétrons finis: chacun est isomorphe à l'ensemble des symétries associées à un sous-espace symétrique d'un groupe fini sans involutions, qui est loin d'être uniquement déterminé: de fait, il existe des groupes finis non isomorphes qui ont les mêmes symétries, et aussi des symétrons finis qui ne sont pas isomorphes aux symétries d'un groupe,
La situation est plus incertaine dans le cas des symétrons de rang de Morley fini, ou même algébriques, qui sont l'objet d'étude principal de cet article. Mais bien qu'un symétron soit une structure nettement plus faible qu'un groupe, nous pouvons étendre aux symétrons des résultats bien connus à propos des groupes de rang de Morley fini: condition de chaîne, décomposition en composantes connexes, caractérisation des parties définissables génériques, génération elliptique, etc. Ces propriétés sont nouvelles même dans le cas des sous-espaces symétriques d’un groupe, et permettent de court-circuiter les calculs de Frécon dans la construction de son plan paradoxal.
En outre, sous l'hypothèse de la Conjecture d'Algébricité, nous généralisons le Théorème de Glauberman au contexte de rang de Morley fini.
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
Let $G$ be a finite permutation group of degree $n$ and let ${\rm ifix}(G)$ be the involution fixity of $G$, which is the maximum number of fixed points of an involution. In this paper, we study the involution fixity of almost simple primitive groups whose socle $T$ is an alternating or sporadic group; our main result classifies the groups of this form with ${\rm ifix}(T) \leqslant n^{4/9}$. This builds on earlier work of Burness and Thomas, who studied the case where $T$ is an exceptional group of Lie type, and it strengthens the bound ${\rm ifix}(T) > n^{1/6}$ (with prescribed exceptions), which was proved by Liebeck and Shalev in 2015. A similar result for classical groups will be established in a sequel.
The problem of finding the number of ordered commuting tuples of elements in a finite group is equivalent to finding the size of the solution set of the system of equations determined by the commutator relations that impose commutativity among any pair of elements from an ordered tuple. We consider this type of systems for the case of ordered triples and express the size of the solution set in terms of the irreducible characters of the group. The obtained formulas are natural extensions of Frobenius’ character formula that calculates the number of ways a group element is a commutator of an ordered pair of elements in a finite group. We discuss how our formulas can be used to study the probability distributions afforded by these systems of equations, and we show explicit calculations for dihedral groups.
We address the question of determining which mapping class groups of infinite-type surfaces admit nonelementary continuous actions on hyperbolic spaces.
More precisely, let $\Sigma $ be a connected, orientable surface of infinite type with tame endspace whose mapping class group is generated by a coarsely bounded subset. We prove that ${\mathrm {Map}}(\Sigma )$ admits a continuous nonelementary action on a hyperbolic space if and only if $\Sigma $ contains a finite-type subsurface which intersects all its homeomorphic translates.
When $\Sigma $ contains such a nondisplaceable subsurface K of finite type, the hyperbolic space we build is constructed from the curve graphs of K and its homeomorphic translates via a construction of Bestvina, Bromberg and Fujiwara. Our construction has several applications: first, the second bounded cohomology of ${\mathrm {Map}}(\Sigma )$ contains an embedded $\ell ^1$; second, using work of Dahmani, Guirardel and Osin, we deduce that ${\mathrm {Map}} (\Sigma )$ contains nontrivial normal free subgroups (while it does not if $\Sigma $ has no nondisplaceable subsurface of finite type), has uncountably many quotients and is SQ-universal.
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.
For a character $\chi $ of a finite group G, the number $\chi ^c(1)={[G:{\textrm {ker}}\chi ]}/{\chi (1)}$ is called the co-degree of $\chi $. A finite group G is an ${\textrm {NDAC}} $-group (no divisibility among co-degrees) when $\chi ^c(1) \nmid \phi ^c(1)$ for all irreducible characters $\chi $ and $\phi $ of G with $1< \chi ^c(1) < \phi ^c(1)$. We study finite groups admitting an irreducible character whose co-degree is a given prime p and finite nonsolvable ${\textrm {NDAC}} $-groups. Then we show that the finite simple groups $^2B_2(2^{2f+1})$, where $f\geq 1$, $\mbox {PSL}_3(4)$, ${\textrm {Alt}}_7$ and $J_1$ are determined uniquely by the set of their irreducible character co-degrees.
Let V be an infinite-dimensional vector space over a field F and let $I(V)$ be the inverse semigroup of all injective partial linear transformations on V. Given $\alpha \in I(V)$, we denote the domain and the range of $\alpha $ by ${\mathop {\textrm {dom}}}\,\alpha $ and ${\mathop {\textrm {im}}}\,\alpha $, and we call the cardinals $g(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {dom}}}\,\alpha $ and $d(\alpha )={\mathop {\textrm {codim}}}\,{\mathop {\textrm {im}}}\,\alpha $ the ‘gap’ and the ‘defect’ of $\alpha $. We study the semigroup $A(V)$ of all injective partial linear transformations with equal gap and defect and characterise Green’s relations and ideals in $A(V)$. This is analogous to work by Sanwong and Sullivan [‘Injective transformations with equal gap and defect’, Bull. Aust. Math. Soc.79 (2009), 327–336] on a similarly defined semigroup for the set case, but we show that these semigroups are never isomorphic.
Let G be a locally compact group and let ${\mathcal {SUB}(G)}$ be the hyperspace of closed subgroups of G endowed with the Chabauty topology. The main purpose of this paper is to characterise the connectedness of the Chabauty space ${\mathcal {SUB}(G)}$. More precisely, we show that if G is a connected pronilpotent group, then ${\mathcal {SUB}(G)}$ is connected if and only if G contains a closed subgroup topologically isomorphic to ${{\mathbb R}}$.
Immanants are functions on square matrices generalizing the determinant and permanent. Kazhdan–Lusztig immanants, which are indexed by permutations, involve $q=1$ specializations of Type A Kazhdan–Lusztig polynomials, and were defined by Rhoades and Skandera (2006, Journal of Algebra 304, 793–811). Using results of Haiman (1993, Journal of the American Mathematical Society 6, 569–595) and Stembridge (1991, Bulletin of the London Mathematical Society 23, 422–428), Rhoades and Skandera showed that Kazhdan–Lusztig immanants are nonnegative on matrices whose minors are nonnegative. We investigate which Kazhdan–Lusztig immanants are positive on k-positive matrices (matrices whose minors of size $k \times k$ and smaller are positive). The Kazhdan–Lusztig immanant indexed by v is positive on k-positive matrices if v avoids 1324 and 2143 and for all noninversions $i< j$ of v, either $j-i \leq k$ or $v_j-v_i \leq k$. Our main tool is Lewis Carroll’s identity.
We show that if w is a multilinear commutator word and G a finite group in which every metanilpotent subgroup generated by w-values is of rank at most r, then the rank of the verbal subgroup $w(G)$ is bounded in terms of r and w only. In the case where G is soluble, we obtain a better result: if G is a finite soluble group in which every nilpotent subgroup generated by w-values is of rank at most r, then the rank of $w(G)$ is at most $r+1$.