To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.
Let $a_1$, $a_2$, and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$. We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$. The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.
Ryabukhin showed that there is a correspondence between elementary radical classes of rings and certain filters of ideals of the free ring on one generator, analogous to the Gabriel correspondence between torsion classes of left unital modules and certain filters of left ideals of the coefficient ring. This correspondence is further explored here. All possibilities for the intersection of the ideals in a filter are catalogued, and the connections between filters and other ways of describing elementary radical classes are investigated. Some generalisations to nonassociative rings and groups are also presented.
We present several results on the connectivity of McKay quivers of finite-dimensional complex representations of finite groups, with no restriction on the faithfulness or self-duality of the representations. We give examples of McKay quivers, as well as quivers that cannot arise as McKay quivers, and discuss a necessary and sufficient condition for two finite groups to share a connected McKay quiver.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group$\mathrm {SL}(d,{\mathbb {R}})$ and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
Linckelmann and Murphy have classified the Morita equivalence classes of p-blocks of finite groups whose basic algebra has dimension at most $12$. We extend their classification to dimension $13$ and $14$. As predicted by Donovan’s conjecture, we obtain only finitely many such Morita equivalence classes.
A finite group whose irreducible complex characters are rational-valued is called a rational group. The aim of this paper is to determine the rational almost simple and rational quasi-simple groups.
In this paper, we analyze Fourier coefficients of automorphic forms on a finite cover G of an adelic split simply-laced group. Let $\pi $ be a minimal or next-to-minimal automorphic representation of G. We prove that any $\eta \in \pi $ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on $\operatorname {GL}_n$. We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type $D_5$ and $E_8$ with a view toward applications to scattering amplitudes in string theory.
We examine 2-complexes $X$ with the property that for any compact connected $Y$, and immersion $Y\rightarrow X$, either $\unicode[STIX]{x1D712}(Y)\leqslant 0$ or $\unicode[STIX]{x1D70B}_{1}Y=1$. The mapping torus of an endomorphism of a free group has this property. Every irreducible 3-manifold with boundary has a spine with this property. We show that the fundamental group of any 2-complex with this property is locally indicable. We outline evidence supporting the conjecture that this property implies coherence. We connect the property to asphericity. Finally, we prove coherence for 2-complexes with a stricter form of this property. As a corollary, every one-relator group with torsion is coherent.
Let G be a finite group, and let cs(G) be the set of conjugacy class sizes of G. Recalling that an element g of G is called a vanishing element if there exists an irreducible character of G taking the value 0 on g, we consider one particular subset of cs(G), namely, the set vcs(G) whose elements are the conjugacy class sizes of the vanishing elements of G. Motivated by the results inBianchi et al. (2020, J. Group Theory, 23, 79–83), we describe the class of the finite groups G such that vcs(G) consists of a single element under the assumption that G is supersolvable or G has a normal Sylow 2-subgroup (in particular, groups of odd order are covered). As a particular case, we also get a characterization of finite groups having a single vanishing conjugacy class size which is either a prime power or square-free.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
For an integer $n\geq 8$ divisible by $4$, let $R_n={\mathbb Z}[\zeta _n,1/2]$ and let $\operatorname {\mathrm {U_{2}}}(R_n)$ be the group of $2\times 2$ unitary matrices with entries in $R_n$. Set $\operatorname {\mathrm {U_2^\zeta }}(R_n)=\{\gamma \in \operatorname {\mathrm {U_{2}}}(R_n)\mid \det \gamma \in \langle \zeta _n\rangle \}$. Let $\mathcal {G}_n\subseteq \operatorname {\mathrm {U_2^\zeta }}(R_n)$ be the Clifford-cyclotomic group generated by a Hadamard matrix $H=\frac {1}{2}[\begin {smallmatrix} 1+i & 1+i\\1+i &-1-i\end {smallmatrix}]$and the gate $T_n=[\begin {smallmatrix}1 & 0\\0 & \zeta _n\end {smallmatrix}]$. We prove that $\mathcal {G}_n=\operatorname {\mathrm {U_2^\zeta }}(R_n)$ if and only if $n=8, 12, 16, 24$ and that $[\operatorname {\mathrm {U_2^\zeta }}(R_n):\mathcal {G}_n]=\infty $ if $\operatorname {\mathrm {U_2^\zeta }}(R_n)\neq \mathcal {G}_n$. We compute the Euler–Poincaré characteristic of the groups $\operatorname {\mathrm {SU_{2}}}(R_n)$, $\operatorname {\mathrm {PSU_{2}}}(R_n)$, $\operatorname {\mathrm {PU_{2}}}(R_n)$, $\operatorname {\mathrm {PU_2^\zeta }}(R_n)$, and $\operatorname {\mathrm {SO_{3}}}(R_n^+)$.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite $\widetilde {\mathfrak M}_c$-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
We show local rigidity of hyperbolic triangle groups generated by reflections in pairs of n-dimensional subspaces of $\mathbb {R}^{2n}$ obtained by composition of the geometric representation in $\mathsf {PGL}(2,\mathbb {R})$ with the diagonal embeddings into $\mathsf {PGL}(2n,\mathbb {R})$ and $\mathsf {PSp}^\pm (2n,\mathbb {R})$.
Suppose that $G$ is a simple reductive group over $\mathbf{Q}$, with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$-valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$, which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$. We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$, which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$.
Given a finite group G, we denote by Δ(G) the graph whose vertices are the proper subgroups of G and in which two vertices H and K are joined by an edge if and only if G = ⟨H, K⟩. We prove that if there exists a finite nilpotent group X with Δ(G) ≅ Δ(X), then G is supersoluble.
Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$), we show that if the ideals $D_e$, with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
Generalised quantum determinantal rings are the analogue in quantum matrices of Schubert varieties. Maximal orders are the noncommutative version of integrally closed rings. In this paper, we show that generalised quantum determinantal rings are maximal orders. The cornerstone of the proof is a description of generalised quantum determinantal rings, up to a localisation, as skew polynomial extensions.
According to Mazhuga’s theorem, the fundamental group H of anyconnected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.