To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ be a totally real field in which $p$ is unramified. Let $\overline{r}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbf{F}}_{p})$ be a modular Galois representation that satisfies the Taylor–Wiles hypotheses and is tamely ramified and generic at a place $v$ above $p$. Let $\mathfrak{m}$ be the corresponding Hecke eigensystem. We describe the $\mathfrak{m}$-torsion in the $\text{mod}\,p$ cohomology of Shimura curves with full congruence level at $v$ as a $\text{GL}_{2}(k_{v})$-representation. In particular, it only depends on $\overline{r}|_{I_{F_{v}}}$ and its Jordan–Hölder factors appear with multiplicity one. The main ingredients are a description of the submodule structure for generic $\text{GL}_{2}(\mathbf{F}_{q})$-projective envelopes and the multiplicity one results of Emerton, Gee and Savitt [Lattices in the cohomology of Shimura curves, Invent. Math.200(1) (2015), 1–96].
The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.
Let $N_g^k$ be a nonorientable surface of genus g with k punctures. In the first part of this note, after introducing preliminary materials, we will give criteria for a chain of Dehn twists to bound a disc. Then, we will show that automorphisms of the mapping class groups map disc bounding chains of Dehn twists to such chains. In the second part of the note, we will introduce bounding pairs of Dehn twists and give an algebraic characterization for such pairs.
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell }$, with $\ell$ different from $p$. We define “nilpotent lifts” of irreducible generic $k$-representations of $GL_{n}(F)$, which take coefficients in Artin local $k$-algebras. We show that an irreducible generic $\ell$-modular representation $\unicode[STIX]{x1D70B}$ of $GL_{n}(F)$ is uniquely determined by its collection of Rankin–Selberg gamma factors $\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D70B}\times \widetilde{\unicode[STIX]{x1D70F}},X,\unicode[STIX]{x1D713})$ as $\widetilde{\unicode[STIX]{x1D70F}}$ varies over nilpotent lifts of irreducible generic $k$-representations $\unicode[STIX]{x1D70F}$ of $GL_{t}(F)$ for $t=1,\ldots ,\lfloor \frac{n}{2}\rfloor$. This gives a characterization of the mod-$\ell$ local Langlands correspondence in terms of gamma factors, assuming it can be extended to a surjective local Langlands correspondence on nilpotent lifts.
We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.
Let $G$ be a finite group and $p$ be an odd prime. We show that if $\mathbf{O}_{p}(G)=1$ and $p^{2}$ does not divide every irreducible $p$-Brauer character degree of $G$, then $|G|_{p}$ is bounded by $p^{3}$ when $p\geqslant 5$ or $p=3$ and $\mathsf{A}_{7}$ is not involved in $G$, and by $3^{4}$ if $p=3$ and $\mathsf{A}_{7}$ is involved in $G$.
Let $C(G)$ be the poset of cyclic subgroups of a finite group $G$ and let $\mathscr{P}$ be the class of $p$-groups of order $p^{n}$ ($n\geq 3$). Consider the function $\unicode[STIX]{x1D6FC}:\mathscr{P}\longrightarrow (0,1]$ given by $\unicode[STIX]{x1D6FC}(G)=|C(G)|/|G|$. In this paper, we determine the second minimum value of $\unicode[STIX]{x1D6FC}$, as well as the corresponding minimum points. Since the problem of finding the second maximum value of $\unicode[STIX]{x1D6FC}$ has been solved for $p=2$, we focus on the case of odd primes in determining the second maximum.
In 1996, a q-deformation of the universal enveloping algebra of the Schrödinger Lie algebra was introduced in Dobrev et al. [J. Phys. A 29 (1996) 5909–5918.]. This algebra is called the quantum Schrödinger algebra. In this paper, we study the Bernstein-Gelfand-Gelfand (BGG) category $\mathcal{O}$ for the quantum Schrödinger algebra $U_q(\mathfrak{s})$, where q is a nonzero complex number which is not a root of unity. If the central charge $\dot z\neq 0$, using the module $B_{\dot z}$ over the quantum Weyl algebra $H_q$, we show that there is an equivalence between the full subcategory $\mathcal{O}[\dot Z]$ consisting of modules with the central charge $\dot z$ and the BGG category $\mathcal{O}^{(\mathfrak{sl}_2)}$ for the quantum group $U_q(\mathfrak{sl}_2)$. In the case that $\dot z = 0$, we study the subcategory $\mathcal{A}$ consisting of finite dimensional $U_q(\mathfrak{s})$-modules of type 1 with zero action of Z. We directly construct an equivalence functor from $\mathcal{A}$ to the category of finite dimensional representations of an infinite quiver with some quadratic relations. As a corollary, we show that the category of finite dimensional $U_q(\mathfrak{s})$-modules is wild.
In 1945–1946, C. L. Siegel proved that an $n$-dimensional lattice $\unicode[STIX]{x1D6EC}$ of determinant $\text{det}(\unicode[STIX]{x1D6EC})$ has at most $m^{n^{2}}$ different sublattices of determinant $m\cdot \text{det}(\unicode[STIX]{x1D6EC})$. In 1997, the exact number of the different sublattices of index $m$ was determined by Baake. We present a systematic treatment for counting the sublattices and derive a formula for the number of the sublattice classes under unimodular equivalence.
It is well known that the pair $(\mathcal {S}_n,\mathcal {S}_{n-1})$ is a Gelfand pair where $\mathcal {S}_n$ is the symmetric group on n elements. In this paper, we prove that if G is a finite group then $(G\wr \mathcal {S}_n, G\wr \mathcal {S}_{n-1}),$ where $G\wr \mathcal {S}_n$ is the wreath product of G by $\mathcal {S}_n,$ is a Gelfand pair if and only if G is abelian.
We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^{g}S^{n}\times S^{n}$ relative to a disc in a stable range, for $2n\geqslant 6$. Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.
For a character $\unicode[STIX]{x1D712}$ of a finite group $G$, the co-degree of $\unicode[STIX]{x1D712}$ is $\unicode[STIX]{x1D712}^{c}(1)=[G:\text{ker}\unicode[STIX]{x1D712}]/\unicode[STIX]{x1D712}(1)$. We study finite groups whose co-degrees of nonprincipal (complex) irreducible characters are divisible by a given prime $p$.
We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
We study exceptional Jordan algebras and related exceptional group schemes over commutative rings from a geometric point of view, using appropriate torsors to parametrize and explain classical and new constructions, and proving that over rings, they give rise to nonisomorphic structures.
We begin by showing that isotopes of Albert algebras are obtained as twists by a certain $\mathrm F_4$-torsor with total space a group of type $\mathrm E_6$ and, using this, that Albert algebras over rings in general admit nonisomorphic isotopes even in the split case, as opposed to the situation over fields. We then consider certain $\mathrm D_4$-torsors constructed from reduced Albert algebras, and show how these give rise to a class of generalised reduced Albert algebras constructed from compositions of quadratic forms. Showing that this torsor is nontrivial, we conclude that the Albert algebra does not uniquely determine the underlying composition, even in the split case. In a similar vein, we show that a given reduced Albert algebra can admit two coordinate algebras which are nonisomorphic and have nonisometric quadratic forms, contrary, in a strong sense, to the case over fields, established by Albert and Jacobson.
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$. This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$-dimensional Galois representations’, Duke Math. J.149(1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math.212(1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$.
We introduce a new kind of action of a relatively hyperbolic group on a $\text{CAT}(0)$ cube complex, called a relatively geometric action. We provide an application to characterize finite-volume Kleinian groups in terms of actions on cube complexes, analogous to the results of Markovic and Haïssinsky in the closed case.
We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $\mathbf{SL}_{n}(\mathbb{Z})$. This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $\mathbf{SL}_{n}(K)$ for $K$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $\mathbf{SL}_{n}(\mathbb{Z})$.
This paper continues the investigation of the structure of uncountable groups whose large subgroups are normal. Moreover, we describe the behaviour of uncountable groups in which every large subgroup is close to normal with the only obstruction of a finite section.