To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define and study cyclotomic quotients of affine Hecke algebras of type B. We establish an isomorphism between direct sums of blocks of these algebras and a generalization, for type B, of cyclotomic quiver Hecke algebras, which are a family of graded algebras closely related to algebras introduced by Varagnolo and Vasserot. Inspired by the work of Brundan and Kleshchev, we first give a family of isomorphisms for the corresponding result in type A which includes their original isomorphism. We then select a particular isomorphism from this family and use it to prove our result.
We prove a combination theorem for hyperbolic groups, in the case of groups acting on complexes displaying combinatorial features reminiscent of non-positive curvature. Such complexes include for instance weakly systolic complexes and C'(1/6) small cancellation polygonal complexes. Our proof involves constructing a potential Gromov boundary for the resulting groups and analyzing the dynamics of the action on the boundary in order to use Bowditch’s characterisation of hyperbolicity. A key ingredient is the introduction of a combinatorial property that implies a weak form of non-positive curvature, and which holds for large classes of complexes.
As an application, we study the hyperbolicity of groups obtained by small cancellation over a graph of hyperbolic groups.
In the present paper, which is a direct sequel of our paper [14] joint with Roozbeh Hazrat, we prove an unrelativized version of the standard commutator formula in the setting of Chevalley groups. Namely, let Φ be a reduced irreducible root system of rank ≥ 2, let R be a commutative ring and let I,J be two ideals of R. We consider subgroups of the Chevalley group G(Φ, R) of type Φ over R. The unrelativized elementary subgroup E(Φ, I) of level I is generated (as a group) by the elementary unipotents xα(ξ), α ∈ Φ, ξ ∈ I, of level I. Obviously, in general, E(Φ, I) has no chance to be normal in E(Φ, R); its normal closure in the absolute elementary subgroup E(Φ, R) is denoted by E(Φ, R, I). The main results of [14] implied that the commutator [E(Φ, I), E(Φ, J)] is in fact normal in E(Φ, R). In the present paper we prove an unexpected result, that in fact [E(Φ, I), E(Φ, J)] = [E(Φ, R, I), E(Φ, R, J)]. It follows that the standard commutator formula also holds in the unrelativized form, namely [E(Φ, I), C(Φ, R, J)] = [E(Φ, I), E(Φ, J)], where C(Φ, R, I) is the full congruence subgroup of level I. In particular, E(Φ, I) is normal in C(Φ, R, I).
If $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ is a covering map between connected graphs, and $H$ is the subgroup of $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$ used to construct the cover, then it is well known that the group of deck transformations of the cover is isomorphic to $N(H)/H$, where $N(H)$ is the normalizer of $H$ in $\unicode[STIX]{x1D70B}_{1}(\unicode[STIX]{x1D6E4},v)$. We show that an entirely analogous result holds for immersions between connected graphs, where the subgroup $H$ is replaced by the closed inverse submonoid of the inverse monoid $L(\unicode[STIX]{x1D6E4},v)$ used to construct the immersion. We observe a relationship between group actions on graphs and deck transformations of graph immersions. We also show that a graph immersion $f:\tilde{\unicode[STIX]{x1D6E4}}\rightarrow \unicode[STIX]{x1D6E4}$ may be extended to a cover $g:\tilde{\unicode[STIX]{x1D6E5}}\rightarrow \unicode[STIX]{x1D6E4}$ in such a way that all deck transformations of $f$ are restrictions of deck transformations of $g$.
Let G be a finite group and σ = {σi| i ∈ I} some partition of the set of all primes $\Bbb{P}$. Then G is said to be: σ-primary if G is a σi-group for some i; σ-nilpotent if G = G1× … × Gt for some σ-primary groups G1, … , Gt; σ-soluble if every chief factor of G is σ-primary. We use $G^{{\mathfrak{N}}_{\sigma}}$ to denote the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N. If G is σ-soluble, then the σ-nilpotent length (denoted by lσ (G)) of G is the length of the shortest normal chain of G with σ-nilpotent factors. Let Nσ (G) be the intersection of the normalizers of the σ-nilpotent residuals of all subgroups of G, that is,
Then the subgroup Nσ (G) is called the σ-nilpotent norm of G. We study the relationship of the σ-nilpotent length with the σ-nilpotent norm of G. In particular, we prove that the σ-nilpotent length of a σ-soluble group G is at most r (r > 1) if and only if lσ (G/ Nσ (G)) ≤ r.
This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group $G$, a reductive subgroup $H\subseteq G$, and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$, defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of $G$. This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$, $n\geqslant 3$), prompting us to seek necessary and sufficient conditions for non-emptiness.
We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$-regularity of $(G,H)$. This $\mathfrak{a}$-regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$. We also provide a classification of the $\mathfrak{a}$-regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.
We enumerate the number of isoclinism classes of semi-extraspecial p-groups with derived subgroup of order p2. To do this, we enumerate GL (2, p)-orbits of sets of irreducible, monic polynomials in 𝔽p[x]. Along the way, we also provide a new construction of an infinite family of semi-extraspecial groups as central quotients of Heisenberg groups over local algebras.
We formulate a $q$-Schur algebra associated with an arbitrary $W$-invariant finite set $X_{\text{f}}$ of integral weights for a complex simple Lie algebra with Weyl group $W$. We establish a $q$-Schur duality between the $q$-Schur algebra and Hecke algebra associated with $W$. We then realize geometrically the $q$-Schur algebra and duality and construct a canonical basis for the $q$-Schur algebra with positivity. With suitable choices of $X_{\text{f}}$ in classical types, we recover the $q$-Schur algebras in the literature. Our $q$-Schur algebras are closely related to the category ${\mathcal{O}}$, where the type $G_{2}$ is studied in detail.
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$, where $C$ is a finite group and $F$ a non-abelian free group.
We study lattice embeddings for the class of countable groups $\unicode[STIX]{x1D6E4}$ defined by the property that the largest amenable uniformly recurrent subgroup ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is continuous. When ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ comes from an extremely proximal action and the envelope of ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is coamenable in $\unicode[STIX]{x1D6E4}$, we obtain restrictions on the locally compact groups $G$ that contain a copy of $\unicode[STIX]{x1D6E4}$ as a lattice, notably regarding normal subgroups of $G$, product decompositions of $G$, and more generally dense mappings from $G$ to a product of locally compact groups.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
For a split reductive group $G$ over a finite field, we show that the intersection (cohomology) motive of the moduli stack of iterated $G$-shtukas with bounded modification and level structure is defined independently of the standard conjectures on motivic $t$-structures on triangulated categories of motives. This is in accordance with general expectations on the independence of $\ell$ in the Langlands correspondence for function fields.
Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.
Let $\Sigma _{g,p}$ be the genus–g oriented surface with p punctures, with either g > 0 or p > 3. We show that $MCG(\Sigma _{g,p})/DT$ is acylindrically hyperbolic where DT is the normal subgroup of the mapping class group $MCG(\Sigma _{g,p})$ generated by $K^{th}$ powers of Dehn twists about curves in $\Sigma _{g,p}$ for suitable K.
Moreover, we show that in low complexity $MCG(\Sigma _{g,p})/DT$ is in fact hyperbolic. In particular, for 3g − 3 + p ⩽ 2, we show that the mapping class group $MCG(\Sigma _{g,p})$ is fully residually non-elementary hyperbolic and admits an affine isometric action with unbounded orbits on some $L^q$ space. Moreover, if every hyperbolic group is residually finite, then every convex-cocompact subgroup of $MCG(\Sigma _{g,p})$ is separable.
The aforementioned results follow from general theorems about composite rotating families, in the sense of [13], that come from a collection of subgroups of vertex stabilizers for the action of a group G on a hyperbolic graph X. We give conditions ensuring that the graph X/N is again hyperbolic and various properties of the action of G on X persist for the action of G/N on X/N.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
We develop the concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups. We give characterizations of the level of a character in terms of its Lusztig label and in terms of its degree. Then we prove explicit upper bounds for character values at elements with not-too-large centralizers and derive upper bounds on the covering number and mixing time of random walks corresponding to these conjugacy classes. We also characterize the level of the character in terms of certain dual pairs and prove explicit exponential character bounds for the character values, provided that the level is not too large. Several further applications are also provided. Related results for other finite classical groups are obtained in the sequel [Guralnick et al. ‘Character levels and character bounds for finite classical groups’, Preprint, 2019, arXiv:1904.08070] by different methods.
Denote by m(G) the largest size of a minimal generating set of a finite group G. We estimate m(G) in terms of $\sum _{p\in \pi (G)}d_p(G),$ where we are denoting by dp(G) the minimal number of generators of a Sylow p-subgroup of G and by π(G) the set of prime numbers dividing the order of G.
Subshifts with property $(A)$ are constructed from a class of directed graphs. As special cases the Markov–Dyck shifts are shown to have property $(A)$. The semigroups that are associated to ${\mathcal{R}}$-graph shifts with Property $(A)$ are determined.
We provide a general program for finding nice arrangements of points inreal or complex projective space from transitive actions of finite groups. In many cases, these arrangements are optimal in the sense of maximizing the minimum distance. We introduce our program in terms of general Schurian association schemes before focusing on the special case of Gelfand pairs. Notably, our program unifies a variety of existing packings with heretofore disparate constructions. In addition, we leverage our program to construct the first known infinite family of equiangular lines with Heisenberg symmetry.