To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a finite group $G$, define the minimal degree $\unicode[STIX]{x1D707}(G)$ of $G$ to be the least $n$ such that $G$ embeds into $S_{n}$. We call $G$ exceptional if there is some $N\unlhd G$ with $\unicode[STIX]{x1D707}(G/N)>\unicode[STIX]{x1D707}(G)$, in which case we call $N$ distinguished. We prove here that a subgroup with no abelian composition factors is not distinguished.
We use methods from the cohomology of groups to describe the finite groups which can act freely and homologically trivially on closed 3-manifolds which are rational homology spheres.
The notion of quantized characters was introduced in our previous paper as a natural quantization of characters in the context of asymptotic representation theory for quantum groups. As in the case of ordinary groups, the representation associated with any extreme quantized character generates a von Neumann factor. From the viewpoint of operator algebras (and measurable dynamical systems), it is natural to ask what is the Murray–von Neumann–Connes type of the resulting factor. In this paper, we give a complete solution to this question when the inductive system is of quantum unitary groups $U_{q}(N)$.
A tubular group G is a finite graph of groups with ℤ2 vertex groups and ℤ edge groups. We characterize residually finite tubular groups: G is residually finite if and only if its edge groups are separable. Methods are provided to determine if G is residually finite. When G has a single vertex group an algorithm is given to determine residual finiteness.
We prove a Tits alternative for topological full groups of minimal actions of finitely generated groups. On the one hand, we show that topological full groups of minimal actions of virtually cyclic groups are amenable. By doing so, we generalize the result of Juschenko and Monod for $\mathbf{Z}$-actions. On the other hand, when a finitely generated group $G$ is not virtually cyclic, then we construct a minimal free action of $G$ on a Cantor space such that the topological full group contains a non-abelian free group.
In this manuscript, we generalize Lewis’s result about a central series associated with the vanishing off subgroup. We write $V_{1}=V(G)$ for the vanishing off subgroup of $G$, and $V_{i}=[V_{i-1},G]$ for the terms in this central series. Lewis proved that there exists a positive integer $n$ such that if $V_{3}<G_{3}$, then $|G\,:\,V_{1}|=|G^{\prime }\,:\,V_{2}|^{2}=p^{2n}$. Let $D_{3}/V_{3}=C_{G/V_{3}}(G^{\prime }/V_{3})$. He also showed that if $V_{3}<G_{3}$, then either $|G\,:\,D_{3}|=p^{n}$ or $D_{3}=V_{1}$. We show that if $V_{i}<G_{i}$ for $i\geqslant 4$, where $G_{i}$ is the $i$-th term in the lower central series of $G$, then $|G_{i-1}\,:\,V_{i-1}|=|G\,:\,D_{3}|$.
We show that certain right-angled Coxeter groups have finite index subgroups that quotient to $\mathbb{Z}$ with finitely generated kernels. The proof uses Bestvina–Brady Morse theory facilitated by combinatorial arguments. We describe a variety of examples where the plan succeeds or fails. Among the successful examples are the right-angled reflection groups in $\mathbb{H}^{4}$ with fundamental domain the 120-cell or the 24-cell.
Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the $n$-dimensional quaternionic hyperbolic space. The linear group $\text{Sp}(n,1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup $G$ of $\text{Sp}(n,1)$ is called Zariski dense if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n}\cup \unicode[STIX]{x2202}\mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup $G$ of $\text{Sp}(n,1)$ is discrete if for every loxodromic element $g\in G$ the two-generator subgroup $\langle f,gfg^{-1}\rangle$ is discrete, where the generator $f\in \text{Sp}(n,1)$ is a certain fixed element not necessarily from $G$.
Quasi-Sturmian words, which are infinite words with factor complexity eventually $n+c$ share many properties with Sturmian words. In this article, we study the quasi-Sturmian colorings on regular trees. There are two different types, bounded and unbounded, of quasi-Sturmian colorings. We obtain an induction algorithm similar to Sturmian colorings. We distinguish them by the recurrence function.
An automorphism of a graph product of groups is conjugating if it sends each factor to a conjugate of a factor (possibly different). In this article, we determine precisely when the group of conjugating automorphisms of a graph product satisfies Kazhdan’s property (T) and when it satisfies some vastness properties including SQ-universality.
On établit une décomposition de l’homologie stable des groupes d’automorphismes des groupes libres à coefficients polynomiaux contravariants en termes d’homologie des foncteurs. Elle permet plusieurs calculs explicites, qui recoupent des résultats établis de manière indépendante par O. Randal-Williams et généralisent certains d’entre eux. Nos méthodes reposent sur l’examen d’extensions de Kan dérivées associées à plusieurs catégories de groupes libres, la généralisation d’un critère d’annulation homologique à coefficients polynomiaux dû à Scorichenko, le théorème de Galatius identifiant l’homologie stable des groupes d’automorphismes des groupes libres à celle des groupes symétriques, la machinerie des $\unicode[STIX]{x1D6E4}$-espaces et le scindement de Snaith.
We consider the notion of the graph product of actions of discrete groups $\{G_{v}\}$ on a $C^{\ast }$-algebra ${\mathcal{A}}$ and show that under suitable commutativity conditions the graph product action $\star _{\unicode[STIX]{x1D6E4}}\unicode[STIX]{x1D6FC}_{v}:\star _{\unicode[STIX]{x1D6E4}}G_{v}\curvearrowright {\mathcal{A}}$ has the Haagerup property if each action $\unicode[STIX]{x1D6FC}_{v}:G_{v}\curvearrowright {\mathcal{A}}$ possesses the Haagerup property. This generalizes the known results on graph products of groups with the Haagerup property. To accomplish this, we introduce the graph product of multipliers associated to the actions and show that the graph product of positive-definite multipliers is positive definite. These results have impacts on left-transformation groupoids and give an alternative proof of a known result for coarse embeddability. We also record a cohomological characterization of the Haagerup property for group actions.
The residual closure of a subgroup H of a group G is the intersection of all virtually normal subgroups of G containing H. We show that if G is generated by finitely many cosets of H and if H is commensurated, then the residual closure of H in G is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
Consider the action of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on the $p$-adic unit sphere ${\mathcal{S}}_{n}$ arising from the linear action on $\mathbb{Q}_{p}^{n}\setminus \{0\}$. We show that for the action of a semigroup $\mathfrak{S}$ of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on ${\mathcal{S}}_{n}$, the following are equivalent: (1) $\mathfrak{S}$ acts distally on ${\mathcal{S}}_{n}$; (2) the closure of the image of $\mathfrak{S}$ in $\operatorname{PGL}(n,\mathbb{Q}_{p})$ is a compact group. On ${\mathcal{S}}_{n}$, we consider the ‘affine’ maps $\overline{T}_{a}$ corresponding to $T$ in $\operatorname{GL}(n,\mathbb{Q}_{p})$ and a nonzero $a$ in $\mathbb{Q}_{p}^{n}$ satisfying $\Vert T^{-1}(a)\Vert _{p}<1$. We show that there exists a compact open subgroup $V$, which depends on $T$, such that $\overline{T}_{a}$ is distal for every nonzero $a\in V$ if and only if $T$ acts distally on ${\mathcal{S}}_{n}$. The dynamics of ‘affine’ maps on $p$-adic unit spheres is quite different from that on the real unit spheres.
A well-known conjecture is that all finitely presented groups have semistable fundamental groups at infinity. A class of groups whose members have not been shown to be semistable at infinity is the class ${\mathcal{A}}$ of finitely presented groups that are ascending HNN-extensions with finitely generated base. The class ${\mathcal{A}}$ naturally partitions into two non-empty subclasses, those that have “bounded” and “unbounded” depth. Using new methods introduced in a companion paper we show those of bounded depth have semistable fundamental group at infinity. Ascending HNN extensions produced by Ol’shanskii–Sapir and Grigorchuk (for other reasons), and once considered potential non-semistable examples are shown to have bounded depth. Finally, we devise a technique for producing explicit examples with unbounded depth. These examples are perhaps the best candidates to date in the search for a group with non-semistable fundamental group at infinity.
Given a positive integer $m$, a finite $p$-group $G$ is called a $BC(p^{m})$-group if $|H_{G}|\leq p^{m}$ for every nonnormal subgroup $H$ of $G$, where $H_{G}$ is the normal core of $H$ in $G$. We show that $m+2$ is an upper bound for the nilpotent class of a finite $BC(p^{m})$-group and obtain a necessary and sufficient condition for a $p$-group to be of maximal class. We also classify the $BC(p)$-groups.
Let $g$ be an element of a finite group $G$ and let $R_{n}(g)$ be the subgroup generated by all the right Engel values $[g,_{n}x]$ over $x\in G$. In the case when $G$ is soluble we prove that if, for some $n$, the Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the $(k+1)$th Fitting subgroup $F_{k+1}(G)$. For nonsoluble $G$, it is proved that if, for some $n$, the generalized Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the generalized Fitting subgroup $F_{f(k,m)}^{\ast }(G)$ with $f(k,m)$ depending only on $k$ and $m$, where $|g|$ is the product of $m$ primes counting multiplicities. It is also proved that if, for some $n$, the nonsoluble length of $R_{n}(g)$ is equal to $k$, then $g$ belongs to a normal subgroup whose nonsoluble length is bounded in terms of $k$ and $m$. Earlier, similar generalizations of Baer’s theorem (which states that an Engel element of a finite group belongs to the Fitting subgroup) were obtained by the first two authors in terms of left Engel-type subgroups.
This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.