We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on a simple object, an i.i.d. sequence of positive integer-valued random variables {an}n∊ℤ, we introduce and study two random structures and their connections. First, a population dynamics, in which each individual is born at time n and dies at time n + an. This dynamics is that of a D/GI/∞ queue, with arrivals at integer times and service times given by {an}n∊ℤ. Second, the directed random graph Tf on ℤ generated by the random map f(n) = n + an. Assuming only that E [a0] < ∞ and P [a0 = 1] > 0, we show that, in steady state, the population dynamics is regenerative, with one individual alive at each regeneration epoch. We identify a unimodular structure in this dynamics. More precisely, Tf is a unimodular directed tree, in which f(n) is the parent of n. This tree has a unique bi-infinite path. Moreover, Tf splits the integers into two categories: ephemeral integers, with a finite number of descendants of all degrees, and successful integers, with an infinite number. Each regeneration epoch is a successful individual such that all integers less than it are its descendants of some order. Ephemeral, successful, and regeneration integers form stationary and mixing point processes on ℤ.
Given a free unitary quantum group $G=A_{u}(F)$, with $F$ not a unitary $2\times 2$ matrix, we show that the Martin boundary of the dual of $G$ with respect to any $G$-${\hat{G}}$-invariant, irreducible, finite-range quantum random walk coincides with the topological boundary defined by Vaes and Vander Vennet. This can be thought of as a quantum analogue of the fact that the Martin boundary of a free group coincides with the space of ends of its Cayley tree.
This note provides an affirmative answer to Problem 2.6 of Praeger and Schneider [‘Group factorisations, uniform automorphisms, and permutation groups of simple diagonal type’, Israel J. Math.228(2) (2018), 1001–1023]. We will build groups $G$ (abelian, nonabelian and simple) for which there are two automorphisms $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD}$ of $G$ such that the map
A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this paper we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data.
Geoffrey Robinson conjectured in 1996 that the $p$-part of character degrees in a $p$-block of a finite group can be bounded in terms of the center of a defect group of the block. We prove this conjecture for all primes $p\neq 2$ for all finite groups. Our argument relies on a reduction by Murai to the case of quasi-simple groups which are then studied using deep results on blocks of finite reductive groups.
We show that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. Using this connection between geometric group theory and commutative algebra, as well as techniques from the theory of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo–Mumford regularity of square-free quadratic monomial ideals. We construct examples of such ideals which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps. We give a doubly logarithmic bound on the regularity as a function of the number of variables if these ideals are Cohen–Macaulay.
We generalize work by Bourgain and Kontorovich [On the local-global conjecture for integral Apollonian gaskets, Invent. Math. 196 (2014), 589–650] and Zhang [On the local-global principle for integral Apollonian 3-circle packings, J. Reine Angew. Math. 737, (2018), 71–110], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group ${\mathcal{A}}\leqslant \text{PSL}_{2}(K)$ satisfying certain conditions, where $K$ is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof is that ${\mathcal{A}}$ possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in $\operatorname{PSL}_{2}({\mathcal{O}}_{K})$ containing a Zariski dense subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$.
We prove that for $n\geqslant 4$, every knot has infinitely many conjugacy classes of $n$-braid representatives if and only if it has one admitting an exchange move.
In this paper, we study the probability distribution of the word map $w(x_{1},x_{2},\ldots ,x_{k})=x_{1}^{n_{1}}x_{2}^{n_{2}}\cdots x_{k}^{n_{k}}$ in a compact Lie group. We show that the probability distribution can be represented as an infinite series. Moreover, in the case of the Lie group $\text{SU}(2)$, our computations give a nice convergent series for the probability distribution.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
We classify all possible JSJ decompositions of doubles of free groups of rank two, and we also compute the Makanin–Razborov diagram of a particular double of a free group and deduce that in general limit groups are not freely subgroup separable.
We show a precise formula, in the form of a monomial, for certain families of parabolic Kazhdan–Lusztig polynomials of the symmetric group. The proof stems from results of Lapid–Mínguez on irreducibility of products in the Bernstein–Zelevinski ring. By quantizing those results into a statement on quantum groups and their canonical bases, we obtain identities of coefficients of certain transition matrices that relate Kazhdan–Lusztig polynomials to their parabolic analogues. This affirms some basic cases of conjectures raised recently by Lapid.
Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.
We prove that every finitely-generated right-angled Artin group embeds into some Brin–Thompson group nV. It follows that any virtually special group can be embedded into some nV, a class that includes surface groups, all finitely-generated Coxeter groups, and many one-ended hyperbolic groups.
This paper concerns the study of the global structure of measure-preserving actions of countable groups on standard probability spaces. Weak containment is a hierarchical notion of complexity of such actions, motivated by an analogous concept in the theory of unitary representations. This concept gives rise to an associated notion of equivalence of actions, called weak equivalence, which is much coarser than the notion of isomorphism (conjugacy). It is well understood now that, in general, isomorphism is a very complex notion, a fact which manifests itself, for example, in the lack of any reasonable structure in the space of actions modulo isomorphism. On the other hand, the space of weak equivalence classes is quite well behaved. Another interesting fact that relates to the study of weak containment is that many important parameters associated with actions, such as the type, cost, and combinatorial parameters, turn out to be invariants of weak equivalence and in fact exhibit desirable monotonicity properties with respect to the pre-order of weak containment, a fact that can be useful in certain applications. There has been quite a lot of activity in this area in the last few years, and our goal in this paper is to provide a survey of this work.
Let R be a Mori domain with complete integral closure
$\widehat R$, nonzero conductor
$\mathfrak f = (R: \widehat R)$, and suppose that both v-class groups
${{\cal C}_v}(R)$ and
${{\cal C}_v}(3\widehat R)$ are finite. If
$R \mathfrak f$ is finite, then the elasticity of R is either rational or infinite. If
$R \mathfrak f$ is artinian, then unions of sets of lengths of R are almost arithmetical progressions with the same difference and global bound. We derive our results in the setting of v-noetherian monoids.
For every element $x$ of a finite group $G$, there always exists a unique minimal subnormal subgroup, say, $G_{x}$ of $G$ such that $x\in G_{x}$. The sub-class of $G$ in which $x$ lies is defined by $\{x^{g}\mid g\in G_{x}\}$. The aim of this paper is to investigate the influence of the sub-class sizes on the structure of finite groups.
Let $K$ be a field that admits a cyclic Galois extension of degree $n\geq 2$. The symmetric group $S_{n}$ acts on $K^{n}$ by permutation of coordinates. Given a subgroup $G$ of $S_{n}$ and $u\in K^{n}$, let $V_{G}(u)$ be the $K$-vector space spanned by the orbit of $u$ under the action of $G$. In this paper we show that, for a special family of groups $G$ of affine type, the dimension of $V_{G}(u)$ can be computed via the greatest common divisor of certain polynomials in $K[x]$. We present some applications of our results to the cases $K=\mathbb{Q}$ and $K$ finite.
A group G has restricted centralizers if for each g in G the centralizer $C_G(g)$ either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
Let $G$ be a group, $p$ be a prime and $P\in \text{Syl}_{p}(G)$. We say that a $p$-Brauer character $\unicode[STIX]{x1D711}$ is monolithic if $G/\ker \unicode[STIX]{x1D711}$ is a monolith. We prove that $P$ is normal in $G$ if and only if $p\nmid \unicode[STIX]{x1D711}(1)$ for each monolithic Brauer character $\unicode[STIX]{x1D711}\in \text{IBr}(G)$. When $G$ is $p$-solvable, we also prove that $P$ is normal in $G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.