To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that if $\mathfrak{s}$ is a solvable Lie algebra of matrices over a field of characteristic 0 and $A\in \mathfrak{s}$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of $A$ belong to $\mathfrak{s}$ if and only if there exist $S,N\in \mathfrak{s}$, $S$ is semisimple, $N$ is nilpotent (not necessarily $[S,N]=0$) such that $A=S+N$.
The word $w=[x_{i_{1}},x_{i_{2}},\ldots ,x_{i_{k}}]$ is a simple commutator word if $k\geq 2,i_{1}\neq i_{2}$ and $i_{j}\in \{1,\ldots ,m\}$ for some $m>1$. For a finite group $G$, we prove that if $i_{1}\neq i_{j}$ for every $j\neq 1$, then the verbal subgroup corresponding to $w$ is nilpotent if and only if $|ab|=|a||b|$ for any $w$-values $a,b\in G$ of coprime orders. We also extend the result to a residually finite group $G$, provided that the set of all $w$-values in $G$ is finite.
We provide a complete classification of all algebras of generalized dihedral type, which are natural generalizations of algebras which occurred in the study of blocks of group algebras with dihedral defect groups. This gives a description by quivers and relations coming from surface triangulations.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is 0 for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups and the lamplighter group.
A generalisation of von Staudt’s theorem that every permutation of the projective line that preserves harmonic quadruples is a projective semilinear map is given. It is then concluded that any proper supergroup of permutations of the projective semilinear group over an algebraically closed field of transcendence degree at least 1 is 4-transitive.
In Ersoy et al. [J. Algebra481 (2017), 1–11], we have proved that if G is a locally finite group with an elementary abelian p-subgroup A of order strictly greater than p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α) does not involve an infinite simple group, then G is almost locally soluble. This result is a consequence of another result proved in Ersoy et al. [J. Algebra481 (2017), 1–11], namely: if G is a simple locally finite group with an elementary abelian group A of automorphisms acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov and for every non-identity α ∈ A the set of fixed points CG(α) does not involve an infinite simple groups then G is finite. In this paper, we improve this result about simple locally finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ≅PSLp(k) where char k ≠ p and P has a subgroup Q of order p2 such that CG(P) = Q.
We generalize the result about the congruence subgroup property for GGS groups in [3] to the family of multi-GGS groups; that is, all multi-GGS groups except the one defined by the constant vector have the congruence subgroup property. New arguments are provided to produce this more general proof.
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
The direct product $\mathbb{N}\times \mathbb{N}$ of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for $\mathbb{N}\times S$, where $S$ is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if $S$ is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of $S$ has a relative left or right identity element.
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
We show that for any n and q, the number of real conjugacy classes in $ \rm{PGL}(\it{n},\mathbb{F}_q) $ is equal to the number of real conjugacy classes of $ \rm{GL}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SL}(\it{n},\mathbb{F}_q) $, refining a result of Lehrer [J. Algebra36(2) (1975), 278–286] and extending the result of Gill and Singh [J. Group Theory14(3) (2011), 461–489] that this holds when n is odd or q is even. Further, we show that this quantity is equal to the number of real conjugacy classes in $ \rm{PGU}(\it{n},\mathbb{F}_q) $, and equal to the number of real conjugacy classes of $ \rm{U}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SU}(\it{n},\mathbb{F}_q) $, refining results of Gow [Linear Algebra Appl.41 (1981), 175–181] and Macdonald [Bull. Austral. Math. Soc.23(1) (1981), 23–48]. We also give a generating function for this common quantity.
Let G be a linear group such that for every g ∈ G there is a finite set ${\cal R}(g)$ with the property that for every x ∈ G all sufficiently long commutators [g, x, x, …, x] belong to ${\cal R}(g)$. We prove that G is finite-by-hypercentral.
We use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.
We finish the classification, begun in two earlier papers, of all simple fusion systems over finite nonabelian p-groups with an abelian subgroup of index p. In particular, this gives many new examples illustrating the enormous variety of exotic examples that can arise. In addition, we classify all simple fusion systems over infinite nonabelian discrete p-toral groups with an abelian subgroup of index p. In all of these cases (finite or infinite), we reduce the problem to one of listing all 𝔽pG-modules (for G finite) satisfying certain conditions: a problem which was solved in the earlier paper [15] using the classification of finite simple groups.
Masures are generalizations of Bruhat–Tits buildings. They were introduced by Gaussent and Rousseau to study Kac–Moody groups over ultrametric fields that generalize reductive groups. Rousseau gave an axiomatic definition of these spaces. We propose an equivalent axiomatic definition, which is shorter, more practical, and closer to the axiom of Bruhat–Tits buildings. Our main tool to prove the equivalence of the axioms is the study of the convexity properties in masures.
In this paper, we revisit the theory of induced representations in the setting of locally compact quantum groups. In the case of induction from open quantum subgroups, we show that constructions of Kustermans and Vaes are equivalent to the classical, and much simpler, construction of Rieffel. We also prove in general setting the continuity of induction in the sense of Vaes with respect to weak containment.
We say that two elements of a group or semigroup are $\Bbbk$-linear conjugates if their images under any linear representation over $\Bbbk$ are conjugate matrices. In this paper we characterize $\Bbbk$-linear conjugacy for finite semigroups (and, in particular, for finite groups) over an arbitrary field $\Bbbk$.
Let $G$ be a finite group and let $p$ be a prime factor of $|G|$. Suppose that $G$ is solvable and $P$ is a Sylow $p$-subgroup of $G$. In this note, we prove that $P{\vartriangleleft}G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all irreducible monomial $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups. Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and prove a theorem that such statements are implied by the existence of appropriate homomorphisms between the algebraic structures. We make a connection between the two themes above, which allows us to prove some general Ramsey theorems for sequences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is stronger than the original one. We answer in the negative a question of Lupini on possible extensions of Gowers’ Ramsey theorem.