To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A group G has restricted centralizers if for each g in G the centralizer $C_G(g)$ either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
Let $G$ be a group, $p$ be a prime and $P\in \text{Syl}_{p}(G)$. We say that a $p$-Brauer character $\unicode[STIX]{x1D711}$ is monolithic if $G/\ker \unicode[STIX]{x1D711}$ is a monolith. We prove that $P$ is normal in $G$ if and only if $p\nmid \unicode[STIX]{x1D711}(1)$ for each monolithic Brauer character $\unicode[STIX]{x1D711}\in \text{IBr}(G)$. When $G$ is $p$-solvable, we also prove that $P$ is normal in $G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
We study 2-generated subgroups $\langle f,g\rangle <\operatorname{Homeo}^{+}(I)$ such that $\langle f^{2},g^{2}\rangle$ is isomorphic to Thompson’s group $F$, and such that the supports of $f$ and $g$ form a chain of two intervals. We show that this class contains uncountably many isomorphism types. These include examples with non-abelian free subgroups, examples which do not admit faithful actions by $C^{2}$ diffeomorphisms on 1-manifolds, examples which do not admit faithful actions by $PL$ homeomorphisms on an interval, and examples which are not finitely presented. We thus answer questions due to Brin. We also show that many relatively uncomplicated groups of homeomorphisms can have very complicated square roots, thus establishing the behavior of square roots of $F$ as part of a general phenomenon among subgroups of $\operatorname{Homeo}^{+}(I)$.
We show that if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced boundary action is hyperfinite. This means that for a cubulated hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which generalizes an old result of Dougherty, Jackson and Kechris for the free group case.
We generalize the Cohen–Lenstra heuristics over function fields to étale group schemes $G$ (with the classical case of abelian groups corresponding to constant group schemes). By using the results of Ellenberg–Venkatesh–Westerland, we make progress towards the proof of these heuristics. Moreover, by keeping track of the image of the Weil-pairing as an element of $\wedge ^{2}G(1)$, we formulate more refined heuristics which nicely explain the deviation from the usual Cohen–Lenstra heuristics for abelian $\ell$-groups in cases where $\ell \mid q-1$; the nature of this failure was suggested already in the works of Malle, Garton, Ellenberg–Venkatesh–Westerland, and others. On the purely large random matrix side, we provide a natural model which has the correct moments, and we conjecture that these moments uniquely determine a limiting probability measure.
We provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.
Let X be a monoid scheme. We will show that the stalk at any point of X defines a point of the topos of quasi-coherent sheaves over X. As it turns out, every topos point of is of this form if X satisfies some finiteness conditions. In particular, it suffices for M/M× to be finitely generated when X is affine, where M× is the group of invertible elements.
This allows us to prove that two quasi-projective monoid schemes X and Y are isomorphic if and only if and are equivalent.
The finiteness conditions are essential, as one can already conclude by the work of A. Connes and C. Consani [3]. We will study the topos points of free commutative monoids and show that already for ℕ∞, there are ‘hidden’ points. That is to say, there are topos points which are not coming from prime ideals. This observation reveals that there might be a more interesting ‘geometry of monoids’.
Let $G$ be a finite group and let $\text{Irr}(G)$ be the set of all irreducible complex characters of $G$. Let $\unicode[STIX]{x1D70C}(G)$ be the set of all prime divisors of character degrees of $G$. The character degree graph $\unicode[STIX]{x1D6E5}(G)$ associated to $G$ is a graph whose vertex set is $\unicode[STIX]{x1D70C}(G)$, and there is an edge between two distinct primes $p$ and $q$ if and only if $pq$ divides $\unicode[STIX]{x1D712}(1)$ for some $\unicode[STIX]{x1D712}\in \text{Irr}(G)$. We prove that $\unicode[STIX]{x1D6E5}(G)$ is $k$-regular for some natural number $k$ if and only if $\overline{\unicode[STIX]{x1D6E5}}(G)$ is a regular bipartite graph.
We prove that if $\mathfrak{s}$ is a solvable Lie algebra of matrices over a field of characteristic 0 and $A\in \mathfrak{s}$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of $A$ belong to $\mathfrak{s}$ if and only if there exist $S,N\in \mathfrak{s}$, $S$ is semisimple, $N$ is nilpotent (not necessarily $[S,N]=0$) such that $A=S+N$.
The word $w=[x_{i_{1}},x_{i_{2}},\ldots ,x_{i_{k}}]$ is a simple commutator word if $k\geq 2,i_{1}\neq i_{2}$ and $i_{j}\in \{1,\ldots ,m\}$ for some $m>1$. For a finite group $G$, we prove that if $i_{1}\neq i_{j}$ for every $j\neq 1$, then the verbal subgroup corresponding to $w$ is nilpotent if and only if $|ab|=|a||b|$ for any $w$-values $a,b\in G$ of coprime orders. We also extend the result to a residually finite group $G$, provided that the set of all $w$-values in $G$ is finite.
We provide a complete classification of all algebras of generalized dihedral type, which are natural generalizations of algebras which occurred in the study of blocks of group algebras with dihedral defect groups. This gives a description by quivers and relations coming from surface triangulations.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is 0 for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups and the lamplighter group.
A generalisation of von Staudt’s theorem that every permutation of the projective line that preserves harmonic quadruples is a projective semilinear map is given. It is then concluded that any proper supergroup of permutations of the projective semilinear group over an algebraically closed field of transcendence degree at least 1 is 4-transitive.
In Ersoy et al. [J. Algebra481 (2017), 1–11], we have proved that if G is a locally finite group with an elementary abelian p-subgroup A of order strictly greater than p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α) does not involve an infinite simple group, then G is almost locally soluble. This result is a consequence of another result proved in Ersoy et al. [J. Algebra481 (2017), 1–11], namely: if G is a simple locally finite group with an elementary abelian group A of automorphisms acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov and for every non-identity α ∈ A the set of fixed points CG(α) does not involve an infinite simple groups then G is finite. In this paper, we improve this result about simple locally finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ≅PSLp(k) where char k ≠ p and P has a subgroup Q of order p2 such that CG(P) = Q.
We generalize the result about the congruence subgroup property for GGS groups in [3] to the family of multi-GGS groups; that is, all multi-GGS groups except the one defined by the constant vector have the congruence subgroup property. New arguments are provided to produce this more general proof.
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
The direct product $\mathbb{N}\times \mathbb{N}$ of two free monogenic semigroups contains uncountably many pairwise nonisomorphic subdirect products. Furthermore, the following hold for $\mathbb{N}\times S$, where $S$ is a finite semigroup. It contains only countably many pairwise nonisomorphic subsemigroups if and only if $S$ is a union of groups. And it contains only countably many pairwise nonisomorphic subdirect products if and only if every element of $S$ has a relative left or right identity element.
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
We show that for any n and q, the number of real conjugacy classes in $ \rm{PGL}(\it{n},\mathbb{F}_q) $ is equal to the number of real conjugacy classes of $ \rm{GL}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SL}(\it{n},\mathbb{F}_q) $, refining a result of Lehrer [J. Algebra36(2) (1975), 278–286] and extending the result of Gill and Singh [J. Group Theory14(3) (2011), 461–489] that this holds when n is odd or q is even. Further, we show that this quantity is equal to the number of real conjugacy classes in $ \rm{PGU}(\it{n},\mathbb{F}_q) $, and equal to the number of real conjugacy classes of $ \rm{U}(\it{n},\mathbb{F}_q) $ which are contained in $ \rm{SU}(\it{n},\mathbb{F}_q) $, refining results of Gow [Linear Algebra Appl.41 (1981), 175–181] and Macdonald [Bull. Austral. Math. Soc.23(1) (1981), 23–48]. We also give a generating function for this common quantity.