We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A canonical basis in the sense of Lusztig is a basis of a free module over a ring of Laurent polynomials that is invariant under a certain semilinear involution and is obtained from a fixed “standard basis” through a triangular base change matrix with polynomial entries whose constant terms equal the identity matrix. Among the better known examples of canonical bases are the Kazhdan–Lusztig basis of Iwahori–Hecke algebras (see Kazhdan and Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184), Lusztig’s canonical basis of quantum groups (see Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3(2) (1990), 447–498) and the Howlett–Yin basis of induced $W$-graph modules (see Howlett and Yin, Inducing W-graphs I, Math. Z. 244(2) (2003), 415–431; Inducing W-graphs II, Manuscripta Math. 115(4) (2004), 495–511). This paper has two major theoretical goals: first to show that having bases is superfluous in the sense that canonicalization can be generalized to nonfree modules. This construction is functorial in the appropriate sense. The second goal is to show that Howlett–Yin induction of $W$-graphs is well-behaved a functor between module categories of $W$-graph algebras that satisfies various properties one hopes for when a functor is called “induction,” for example transitivity and a Mackey theorem.
Let $G$ be an orthogonal, symplectic or unitary group over a non-archimedean local field of odd residual characteristic. This paper concerns the study of the “wild part” of an irreducible smooth representation of $G$, encoded in its “semisimple character”. We prove two fundamental results concerning them, which are crucial steps toward a complete classification of the cuspidal representations of $G$. First we introduce a geometric combinatorial condition under which we prove an “intertwining implies conjugacy” theorem for semisimple characters, both in $G$ and in the ambient general linear group. Second, we prove a Skolem–Noether theorem for the action of $G$ on its Lie algebra; more precisely, two semisimple elements of the Lie algebra of $G$ which have the same characteristic polynomial must be conjugate under an element of $G$ if there are corresponding semisimple strata which are intertwined by an element of $G$.
The genus spectrum of a finite group G is the set of all g such that G acts faithfully on a compact Riemann surface of genus g. It is an open problem to find a general description of the genus spectrum of the groups in interesting classes, such as the Abelian p-groups. Motivated by earlier work of Talu for odd primes, we develop a general combinatorial method, for arbitrary primes, to obtain a structured description of the so-called reduced genus spectrum of Abelian p-groups, including the reduced minimum genus. In particular, we determine the complete genus spectrum for a large subclass, namely, those having ‘large’ defining invariants. With our method we construct infinitely many counterexamples to a conjecture of Talu, which states that an Abelian p-group is recoverable from its genus spectrum. Finally, we give a series of examples of our method, in the course of which we prove, for example, that almost all elementary Abelian p-groups are uniquely determined by their minimum genus, and that almost all Abelian p-groups of exponent p2 are uniquely determined by their minimum genus and Kulkarni invariant.
For an orientable surface S of finite topological type with genus g ≥ 3, we construct a finite set of curves whose union of iterated rigid expansions is the curve graph $\mathcal{C}$(S). The set constructed, and the method of rigid expansion, are closely related to Aramayona and Leiniger's finite rigid set in Aramayona and Leininger, J. Topology Anal.5(2) (2013), 183–203 and Aramayona and Leininger, Pac. J. Math.282(2) (2016), 257–283, and in fact a consequence of our proof is that Aramayona and Leininger's set also exhausts the curve graph via rigid expansions.
We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.
This paper examines a systematic method of constructing a pair of (inter-related) root systems for arbitrary Coxeter groups from a class of nonstandard geometric representations. This method can be employed to construct generalizations of root systems for a large family of linear groups generated by involutions. We then give a characterization of Coxeter groups, among these groups, in terms of such paired root systems. Furthermore, we use this method to construct and study the paired root systems for reflection subgroups of Coxeter groups.
As generalizations of inverse semigroups, Ehresmann semigroups are introduced by Lawson and investigated by many authors extensively in the literature. In particular, Lawson has proved that the category of Ehresmann semigroups and admissible morphisms is isomorphic to the category of Ehresmann categories and strongly ordered functors, which generalizes the well-known Ehresmann–Schein–Nambooripad (ESN) theorem for inverse semigroups. From a varietal perspective, Ehresmann semigroups are derived from reducts of inverse semigroups. In this paper, inspired by the approach of Jones [‘A common framework for restriction semigroups and regular $\ast$-semigroups’, J. Pure Appl. Algebra216 (2012), 618–632], Ehresmann semigroups are extended from a varietal perspective to pseudo-Ehresmann semigroups derived instead from reducts of regular semigroups with a multiplicative inverse transversal. Furthermore, motivated by the method used by Gould and Wang [‘Beyond orthodox semigroups’, J. Algebra368 (2012), 209–230], we introduce the notion of inductive pseudocategories over admissible quadruples by which pseudo-Ehresmann semigroups are described. More precisely, we show that the category of pseudo-Ehresmann semigroups and (2,1,1,1)-morphisms is isomorphic to the category of inductive pseudocategories over admissible quadruples and pseudofunctors. Our work not only generalizes the result of Lawson for Ehresmann semigroups but also produces a new approach to characterize regular semigroups with a multiplicative inverse transversal.
Left restriction semigroups are the unary semigroups that abstractly characterize semigroups of partial maps on a set, where the unary operation associates to a map the identity element on its domain. This paper is the sequel to two recent papers by the author, melding the results of the first, on membership in the variety $\mathbf{B}$ of left restriction semigroups generated by Brandt semigroups and monoids, with the connection established in the second between subvarieties of the variety $\mathbf{B}_{R}$ of two-sided restriction semigroups similarly generated and varieties of categories, in the sense of Tilson. We show that the respective lattices ${\mathcal{L}}(\mathbf{B})$ and ${\mathcal{L}}(\mathbf{B}_{R})$ of subvarieties are almost isomorphic, in a very specific sense. With the exception of the members of the interval $[\mathbf{D},\mathbf{D}\vee \mathbf{M}]$, every subvariety of $\mathbf{B}$ is induced from a member of $\mathbf{B}_{R}$ and vice versa. Here $\mathbf{D}$ is generated by the three-element left restriction semigroup $D$ and $\mathbf{M}$ is the variety of monoids. The analogues hold for pseudovarieties.
Fix a finite semigroup $S$ and let $a_{1},\ldots ,a_{k},b$ be tuples in a direct power $S^{n}$. The subpower membership problem (SMP) for $S$ asks whether $b$ can be generated by $a_{1},\ldots ,a_{k}$. For combinatorial Rees matrix semigroups we establish a dichotomy result: if the corresponding matrix is of a certain form, then the SMP is in P; otherwise it is NP-complete. For combinatorial Rees matrix semigroups with adjoined identity, we obtain a trichotomy: the SMP is either in P, NP-complete, or PSPACE-complete. This result yields various semigroups with PSPACE-complete SMP including the six-element Brandt monoid, the full transformation semigroup on three or more letters, and semigroups of all $n$ by $n$ matrices over a field for $n\geq 2$.
We study the numbers of involutions and their relation to Frobenius–Schur indicators in the groups $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$. Our point of view for this study comes from two motivations. The first is the conjecture that a finite simple group $G$ is strongly real (all elements are conjugate to their inverses by an involution) if and only if it is totally orthogonal (all Frobenius–Schur indicators are 1), and we observe this holds for all finite simple groups $G$ other than the groups $\unicode[STIX]{x1D6FA}^{\pm }(4m,q)$ with $q$ even. We prove computationally that for small $m$ this statement indeed holds for these groups by equating their character degree sums with the number of involutions. We also prove a result on a certain twisted indicator for the groups $\text{SO}^{\pm }(4m+2,q)$ with $q$ odd. Our second motivation is to continue the work of Fulman, Guralnick, and Stanton on generating functions and asymptotics for involutions in classical groups. We extend their work by finding generating functions for the numbers of involutions in $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$ for all $q$, and we use these to compute the asymptotic behavior for the number of involutions in these groups when $q$ is fixed and $n$ grows.
We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
We present an algorithm for calculating the geometric intersection number of two multicurves on the $n$-punctured disk, taking as input their Dynnikov coordinates. The algorithm has complexity $O(m^{2}n^{4})$, where $m$ is the sum of the absolute values of the Dynnikov coordinates of the two multicurves. The main ingredient is an algorithm due to Cumplido for relaxing a multicurve.
We investigate products of certain double cosets for the symmetric group and use the findings to derive some multiplication formulas for the $q$-Schur superalgebras. This gives a combinatorialization of the relative norm approach developed in Du and Gu (A realization of the quantum supergroup$\mathbf{U}(\mathfrak{g}\mathfrak{l}_{m|n})$, J. Algebra 404 (2014), 60–99). We then give several applications of the multiplication formulas, including the matrix representation of the regular representation and a semisimplicity criterion for $q$-Schur superalgebras. We also construct infinitesimal and little $q$-Schur superalgebras directly from the multiplication formulas and develop their semisimplicity criteria.
For a field $\text{k}$, we prove that the $i$th homology of the groups $\operatorname{GL}_{n}(\text{k})$, $\operatorname{SL}_{n}(\text{k})$, $\operatorname{Sp}_{2n}(\text{k})$, $\operatorname{SO}_{n,n}(\text{k})$, and $\operatorname{SO}_{n,n+1}(\text{k})$ with coefficients in their Steinberg representations vanish for $n\geqslant 2i+2$.
Assume that $G$ is a finite group and $H$ is a 2-nilpotent Sylow tower Hall subgroup of $G$ such that if $x$ and $y$ are $G$-conjugate elements of $H\cap G^{\prime }$ of prime order or order 4, then $x$ and $y$ are $H$-conjugate. We prove that there exists a normal subgroup $N$ of $G$ such that $G=HN$ and $H\cap N=1$.
is a subgroup of the automorphism group of a regular p-adic rooted tree T that is generated by one rooted automorphism a and p families $b^{(j)}_{1}, \ldots, b^{(j)}_{r_{j}}$ of directed automorphisms, each family sharing a common directed path disjoint from the paths of the other families. This notion generalizes the concepts of multi-edge spinal groups, including the widely studied GGS groups (named after Grigorchuk, Gupta and Sidki), and extended Gupta–Sidki groups that were introduced by Pervova [‘Profinite completions of some groups acting on trees, J. Algebra310 (2007), 858–879’]. Extending techniques that were developed in these more special cases, we prove: generalized multi-edge spinal groups that are torsion have no maximal subgroups of infinite index. Furthermore, we use tree enveloping algebras, which were introduced by Sidki [‘A primitive ring associated to a Burnside 3-group, J. London Math. Soc.55 (1997), 55–64’] and Bartholdi [‘Branch rings, thinned rings, tree enveloping rings, Israel J. Math.154 (2006), 93–139’], to show that certain generalized multi-edge spinal groups admit faithful infinite-dimensional irreducible representations over the prime field ℤ/pℤ.
We investigate the structure of the twisted Brauer monoid , comparing and contrasting it with the structure of the (untwisted) Brauer monoid . We characterize Green's relations and pre-orders on , describe the lattice of ideals and give necessary and sufficient conditions for an ideal to be idempotent generated. We obtain formulae for the rank (smallest size of a generating set) and (where applicable) the idempotent rank (smallest size of an idempotent generating set) of each principal ideal; in particular, when an ideal is idempotent generated, its rank and idempotent rank are equal. As an application of our results, we describe the idempotent generated subsemigroup of (which is not an ideal), as well as the singular ideal of (which is neither principal nor idempotent generated), and we deduce that the singular part of the Brauer monoid is idempotent generated, a result previously proved by Maltcev and Mazorchuk.
The group of ${\mathcal{C}}^{1}$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson’s groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional generalizations $nV$ of Thompson’s group $V$ arise when we consider products of central ternary Cantor sets. We derive that the ${\mathcal{C}}^{2}$-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
We establish a new sufficient condition under which a monoid is nonfinitely based and apply this condition to Lee monoids $L_{\ell }^{1}$, obtained by adjoining an identity element to the semigroup generated by two idempotents $a$ and $b$ with the relation $0=abab\cdots \,$ (length $\ell$). We show that every monoid $M$ which generates a variety containing $L_{5}^{1}$ and is contained in the variety generated by $L_{\ell }^{1}$ for some $\ell \geq 5$ is nonfinitely based. We establish this result by analysing $\unicode[STIX]{x1D70F}$-terms for $M$, where $\unicode[STIX]{x1D70F}$ is a certain nontrivial congruence on the free semigroup. We also show that if $\unicode[STIX]{x1D70F}$ is the trivial congruence on the free semigroup and $\ell \leq 5$, then the $\unicode[STIX]{x1D70F}$-terms (isoterms) for $L_{\ell }^{1}$ carry no information about the nonfinite basis property of $L_{\ell }^{1}$.