To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
For a centre-by-metabelian pro-$p$ group $G$ of type $\text{FP}_{2m}$, for some $m\geqslant 1$, we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$, for all $0\leqslant i\leqslant m$, where ${\mathcal{A}}$ is the set of all subgroups of $p$-power index in $G$ and, for a finitely generated abelian pro-$p$ group $V$, rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$.
This paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell’s aperiodic pointlike theorem. We use a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided semidirect product whose components are built from two subsemigroups $T_{1}$, $T_{2}$, which together generate $T$, and the subsemigroup generated by their setwise product $T_{1}T_{2}$. In this sense we decompose $T$ by merging the subsemigroups $T_{1}$ and $T_{2}$. More generally, our technique merges semigroup homomorphisms from free semigroups.
We consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.
The profinite completion of the fundamental group of a closed, orientable $3$-manifold determines the Kneser–Milnor decomposition. If $M$ is irreducible, then the profinite completion determines the Jaco–Shalen–Johannson decomposition of $M$.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.
Let C be a set of positive integers. In this paper, we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x1 + … + xn is a partition of an element in C, then at least a summand of this partition belongs to A. We use techniques of numerical semigroups to solve this problem because it is equivalent to give an algorithm that allows us to compute all the numerical semigroups which are maximals with the condition that has an empty intersection with the set C.
Let F be a field of characteristic two and G a finite abelian 2-group with an involutory automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric normalized units of FG. We calculate the orders and the invariants of these subgroups.
A subset $A$ of a finite abelian group $G$ is called $(k,l)$-sum-free if the sum of $k$ (not necessarily distinct) elements of $A$ never equals the sum of $l$ (not necessarily distinct) elements of $A$. We find an explicit formula for the maximum size of a $(k,l)$-sum-free subset in $G$ for all $k$ and $l$ in the case when $G$ is cyclic by proving that it suffices to consider $(k,l)$-sum-free intervals in subgroups of $G$. This simplifies and extends earlier results by Hamidoune and Plagne [‘A new critical pair theorem applied to sum-free sets in abelian groups’, Comment. Math. Helv.79(1) (2004), 183–207] and Bajnok [‘On the maximum size of a $(k,l)$-sum-free subset of an abelian group’, Int. J. Number Theory5(6) (2009), 953–971].
Let $q$ be a prime and let $A$ be an elementary abelian group of order at least $q^{3}$ acting by automorphisms on a finite $q^{\prime }$-group $G$. We prove that if $|\unicode[STIX]{x1D6FE}_{\infty }(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\unicode[STIX]{x1D6FE}_{\infty }(G)$ is $m$-bounded. If $F(C_{G}(a))$ has index at most $m$ in $C_{G}(a)$ for any $a\in A^{\#}$, then the index of $F_{2}(G)$ is $m$-bounded.
For an arbitrary discrete probability-measure-preserving groupoid $G$, we provide a characterization of property (T) for $G$ in terms of the groupoid von Neumann algebra $L(G)$. More generally, we obtain a characterization of relative property (T) for a subgroupoid $H\subset G$ in terms of the inclusions $L(H)\subset L(G)$.
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.
Let $G$ be a group acting properly by isometries and with a strongly contracting element on a geodesic metric space. Let $N$ be an infinite normal subgroup of $G$ and let $\unicode[STIX]{x1D6FF}_{N}$ and $\unicode[STIX]{x1D6FF}_{G}$ be the growth rates of $N$ and $G$ with respect to the pseudo-metric induced by the action. We prove that if $G$ has purely exponential growth with respect to the pseudo-metric, then $\unicode[STIX]{x1D6FF}_{N}/\unicode[STIX]{x1D6FF}_{G}>1/2$. Our result applies to suitable actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small cancellation groups, etc. This extends Grigorchuk’s original result on free groups with respect to a word metric and a recent result of Matsuzaki, Yabuki and Jaerisch on groups acting on hyperbolic spaces to a much wider class of groups acting on spaces that are not necessarily hyperbolic.
Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.
We investigate the structure of root data by considering their decomposition as a product of a semisimple root datum and a torus. Using this decomposition, we obtain a parametrization of the isomorphism classes of all root data. By working at the level of root data, we introduce the notion of a smooth regular embedding of a connected reductive algebraic group, which is a refinement of the commonly used regular embeddings introduced by Lusztig. In the absence of Steinberg endomorphisms, such embeddings were constructed by Benjamin Martin. In an unpublished manuscript, Asai proved three key reduction techniques that are used for reducing statements about arbitrary connected reductive algebraic groups, equipped with a Frobenius endomorphism, to those whose derived subgroup is simple and simply connected. Using our investigations into root data we give new proofs of Asai's results and generalize them so that they are compatible with Steinberg endomorphisms. As an illustration of these ideas, we answer a question posed to us by Olivier Dudas concerning unipotent supports.
We examine situations, where representations of a finite-dimensional F-algebra A defined over a separable extension field K/F, have a unique minimal field of definition. Here the base field F is assumed to be a field of dimension ≼1. In particular, F could be a finite field or k(t) or k((t)), where k is algebraically closed. We show that a unique minimal field of definition exists if (a) K/F is an algebraic extension or (b) A is of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension of F. This is not the case if A is of infinite representation type or F fails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.
If H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by Ⅼ(a), and ℒ(H) = {Ⅼ(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R• can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R• to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R• and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.
We investigate the Galois structures of $p$-adic cohomology groups of general $p$-adic representations over finite extensions of number fields. We show, in particular, that as the field extensions vary over natural families the Galois modules formed by these cohomology groups always decompose as the direct sum of a projective module and a complementary module of bounded $p$-rank. We use this result to derive new (upper and lower) bounds on the changes in ranks of Selmer groups over extensions of number fields and descriptions of the explicit Galois structures of natural arithmetic modules.
A Tits polygon is a bipartite graph in which the neighborhood of every vertex is endowed with an “opposition relation” satisfying certain properties. Moufang polygons are precisely the Tits polygons in which these opposition relations are all trivial. There is a standard construction that produces a Tits polygon whose opposition relations are not all trivial from an arbitrary pair $(\unicode[STIX]{x1D6E5},T)$, where $\unicode[STIX]{x1D6E5}$ is a building of type $\unicode[STIX]{x1D6F1}$, $\unicode[STIX]{x1D6F1}$ is a spherical, irreducible Coxeter diagram of rank at least $3$, and $T$ is a Tits index of absolute type $\unicode[STIX]{x1D6F1}$ and relative rank $2$. A Tits polygon is called $k$-plump if its opposition relations satisfy a mild condition that is satisfied by all Tits triangles coming from a pair $(\unicode[STIX]{x1D6E5},T)$ such that every panel of $\unicode[STIX]{x1D6E5}$ has at least $k+1$ chambers. We show that a $5$-plump Tits triangle is parametrized and uniquely determined by a ring $R$ that is alternative and of stable rank $2$. We use the connection between Tits triangles and the theory of Veldkamp planes as developed by Veldkamp and Faulkner to show existence.