To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a finite group and $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes $\mathbb{P}$, that is, $\mathbb{P}=\bigcup _{i\in I}\unicode[STIX]{x1D70E}_{i}$ and $\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}=\emptyset$ for all $i\neq j$. We say that $G$ is $\unicode[STIX]{x1D70E}$-primary if $G$ is a $\unicode[STIX]{x1D70E}_{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: $\unicode[STIX]{x1D70E}$-subnormal in$G$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $\unicode[STIX]{x1D70E}$-primary for all $i=1,\ldots ,n$; modular in$G$ if the following conditions hold: (i) $\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ for all $X\leq G,Z\leq G$ such that $X\leq Z$ and (ii) $\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ for all $Y\leq G,Z\leq G$ such that $A\leq Z$; and $\unicode[STIX]{x1D70E}$-quasinormal in$G$ if $A$ is modular and $\unicode[STIX]{x1D70E}$-subnormal in $G$. We study $\unicode[STIX]{x1D70E}$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $\unicode[STIX]{x1D70E}$-quasinormal in $G$, then every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ is $\unicode[STIX]{x1D70E}$-central in$G$, that is, the semidirect product $(H/K)\rtimes (G/C_{G}(H/K))$ is $\unicode[STIX]{x1D70E}$-primary.
How many generators and relations does $\text{SL}\,_{n}(\mathbb{F}_{q}[t,t^{-1}])$ need? In this paper we exhibit its explicit presentation with $9$ generators and $44$ relations. We investigate presentations of affine Kac–Moody groups over finite fields. Our goal is to derive finite presentations, independent of the field and with as few generators and relations as we can achieve. It turns out that any simply connected affine Kac–Moody group over a finite field has a presentation with at most 11 generators and 70 relations. We describe these presentations explicitly type by type. As a consequence, we derive explicit presentations of Chevalley groups $G(\mathbb{F}_{q}[t,t^{-1}])$ and explicit profinite presentations of profinite Chevalley groups $G(\mathbb{F}_{q}[[t]])$.
This paper is dedicated to a problem raised by Jacquet Tits in 1956: the Weyl group of a Chevalley group should find an interpretation as a group over what is nowadays called $\mathbb{F}_{1}$, the field with one element. Based on Part I of The geometry of blueprints, we introduce the class of Tits morphisms between blue schemes. The resulting Tits category$\text{Sch}_{{\mathcal{T}}}$ comes together with a base extension to (semiring) schemes and the so-called Weyl extension to sets. We prove for ${\mathcal{G}}$ in a wide class of Chevalley groups—which includes the special and general linear groups, symplectic and special orthogonal groups, and all types of adjoint groups—that a linear representation of ${\mathcal{G}}$ defines a model $G$ in $\text{Sch}_{{\mathcal{T}}}$ whose Weyl extension is the Weyl group $W$ of ${\mathcal{G}}$. We call such models Tits–Weyl models. The potential of Tits–Weyl models lies in (a) their intrinsic definition that is given by a linear representation; (b) the (yet to be formulated) unified approach towards thick and thin geometries; and (c) the extension of a Chevalley group to a functor on blueprints, which makes it, in particular, possible to consider Chevalley groups over semirings. This opens applications to idempotent analysis and tropical geometry.
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups.
(ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group.
We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product $G\times A$, where $A$ is a finite abelian group and $G$ has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
In this paper we establish Springer correspondence for the symmetric pair $(\text{SL}(N),\text{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at $q=-1$. Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at $q=-1$ arise in geometry.
In this paper, we prove a combination theorem for a complex of relatively hyperbolic groups. It is a generalization of Martin’s (Geom. Topology18 (2014), 31–102) work for combination of hyperbolic groups over a finite MK-simplicial complex, where k ≤ 0.
In this paper, we introduce the notion of the equivalence relation, called n-isoclinism, between crossed modules of groups, and give some basic properties of this notion. In particular, we obtain some criteria under which crossed modules are n-isoclinic. Also, we present the notion of n-stem crossed module and, under some conditions, determine them within an n-isoclinism class.
Let A and G be finite groups and suppose that A acts via automorphisms on G with $(|A|, |G|)=1$. We study how certain conditions on the Sylow 2-subgroups of the fixed point subgroup of the action $C_G(A)$ may imply the non-simplicity or solubility of G.
The equational complexity function $\beta \nu \,:\,{\open N} \to {\open N}$ of an equational class of algebras bounds the size of equation required to determine the membership of n-element algebras in . Known examples of finitely generated varieties with unbounded equational complexity have growth in Ω(nc), usually for c ≥ (1/2). We show that much slower growth is possible, exhibiting $O(\log_{2}^{3}(n))$ growth among varieties of semilattice-ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational complexity function, bounded if and only if all Sylow subgroups are abelian.
We describe completely the link invariants constructed using Markov traces on the Yokonuma–Hecke algebras in terms of the linking matrix and the Hoste–Ocneanu–Millett–Freyd–Lickorish–Yetter–Przytycki–Traczyk (HOMFLY-PT) polynomials of sublinks.
If $\unicode[STIX]{x1D703}$ is a subgroup property, a group $G$ is said to satisfy the double chain condition on $\unicode[STIX]{x1D703}$-subgroups if it admits no infinite double sequences
consisting of $\unicode[STIX]{x1D703}$-subgroups. We describe the structure of generalised radical groups satisfying the double chain condition on abelian subgroups.
For a prime $p$, let $\hat{F}_{p}$ be a finitely generated free pro-$p$-group of rank at least $2$. We show that the second discrete homology group $H_{2}(\hat{F}_{p},\mathbb{Z}/p)$ is an uncountable $\mathbb{Z}/p$-vector space. This answers a problem of A. K. Bousfield.
Sequential order statistics can be used to describe the ordered lifetimes of components of a system when the failure of a component may affect the reliability of the remaining components. After a reliability system consisting of n components fails, some of its components may still be alive. In this paper we first establish some univariate stochastic orderings and ageing properties of the residual lifetimes of the live components in a sequential (n-r+1)-out-of-n system. We also obtain a characterizing result for the exponential distribution based on uncorrelated residual lifetimes of live components. Finally, we provide some sufficient conditions for comparing vectors of residual lifetimes of the live components from two sequential (n-r+1)-out-of-n systems. The results established here extend some well-known results in the literature.
Let $T$ be a finite simple group of Lie type in characteristic $p$, and let $S$ be a Sylow subgroup of $T$ with maximal order. It is well known that $S$ is a Sylow $p$-subgroup except for an explicit list of exceptions and that $S$ is always ‘large’ in the sense that $|T|^{1/3}<|S|\leq |T|^{1/2}$. One might anticipate that, moreover, the Sylow $r$-subgroups of $T$ with $r\neq p$ are usually significantly smaller than $S$. We verify this hypothesis by proving that, for every $T$ and every prime divisor $r$ of $|T|$ with $r\neq p$, the order of the Sylow $r$-subgroup of $T$ is at most $|T|^{2\lfloor \log _{r}(4(\ell +1)r)\rfloor /\ell }=|T|^{O(\log _{r}(\ell )/\ell )}$, where $\ell$ is the Lie rank of $T$.
A subgroup $H$ is called a weak second maximal subgroup of $G$ if $H$ is a maximal subgroup of a maximal subgroup of $G$. Let $m(G,H)$ denote the number of maximal subgroups of $G$ containing $H$. We prove that $m(G,H)-1$ divides the index of some maximal subgroup of $G$ when $H$ is a weak second maximal subgroup of $G$. This partially answers a question of Flavell [‘Overgroups of second maximal subgroups’, Arch. Math.64(4) (1995), 277–282] and extends a result of Pálfy and Pudlák [‘Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups’, Algebra Universalis11(1) (1980), 22–27].
We consider the relationship between structural information of a finite group $G$ and $\text{cd}_{\unicode[STIX]{x1D6FC}}(G)$, the set of all irreducible projective character degrees of $G$ with factor set $\unicode[STIX]{x1D6FC}$. We show that for nontrivial $\unicode[STIX]{x1D6FC}$, if all numbers in $\text{cd}_{\unicode[STIX]{x1D6FC}}(G)$ are prime powers, then $G$ is solvable. Our result is proved by classical character theory using the bijection between irreducible projective representations and irreducible constituents of induced representations in its representation group.
Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.
Let ℍ be the division ring of real quaternions. Let SL(2, ℍ) be the group of 2 × 2 quaternionic matrices $A={\scriptsize{(\begin{array}{l@{\quad}l} a & b \\ c & d \end{array})}}$ with quaternionic determinant det A = |ad − aca−1b| = 1. This group acts by the orientation-preserving isometries of the five-dimensional real hyperbolic space. We obtain discreteness criteria for Zariski-dense subgroups of SL(2, ℍ).
Let $T$ be a locally finite tree without vertices of degree $1$. We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$, then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.
Given a locally finite leafless tree $T$, various algebraic groups over local fields might appear as closed subgroups of $\operatorname{Aut}(T)$. We show that the set of closed cocompact subgroups of $\operatorname{Aut}(T)$ that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty space of $\operatorname{Aut}(T)$. This is done via a study of the integral Bruhat–Tits model of $\operatorname{SL}_{2}$ and $\operatorname{SU}_{3}^{L/K}$, that we carry on over arbitrary local fields, without any restriction on the (residue) characteristic. In particular, we show that in residue characteristic $2$, the Tits index of simple algebraic subgroups of $\operatorname{Aut}(T)$ is not always preserved under Chabauty limits.