We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We complete the classification of the finite special linear groups $\text{SL}_{n}(q)$ which are $(2,3)$-generated, that is, which are generated by an involution and an element of order $3$. This also gives the classification of the finite simple groups $\text{PSL}_{n}(q)$ which are $(2,3)$-generated.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
Let $\mathbf{G}$ be a connected reductive algebraic group over an algebraic closure $\overline{\mathbb{F}_{p}}$ of the finite field of prime order $p$ and let $F:\mathbf{G}\rightarrow \mathbf{G}$ be a Frobenius endomorphism with $G=\mathbf{G}^{F}$ the corresponding $\mathbb{F}_{q}$-rational structure. One of the strongest links we have between the representation theory of $G$ and the geometry of the unipotent conjugacy classes of $\mathbf{G}$ is a formula, due to Lusztig (Adv. Math. 94(2) (1992), 139–179), which decomposes Kawanaka’s Generalized Gelfand–Graev Representations (GGGRs) in terms of characteristic functions of intersection cohomology complexes defined on the closure of a unipotent class. Unfortunately, the formula given in Lusztig (Adv. Math. 94(2) (1992), 139–179) is only valid under the assumption that $p$ is large enough. In this article, we show that Lusztig’s formula for GGGRs holds under the much milder assumption that $p$ is an acceptable prime for $\mathbf{G}$ ($p$ very good is sufficient but not necessary). As an application we show that every irreducible character of $G$, respectively, character sheaf of $\mathbf{G}$, has a unique wave front set, respectively, unipotent support, whenever $p$ is good for $\mathbf{G}$.
Let $G$ be a finite group acting transitively on a set $\unicode[STIX]{x1D6FA}$. We study what it means for this action to be quasirandom, thereby generalizing Gowers’ study of quasirandomness in groups. We connect this notion of quasirandomness to an upper bound for the convolution of functions associated with the action of $G$ on $\unicode[STIX]{x1D6FA}$. This convolution bound allows us to give sufficient conditions such that sets $S\subseteq G$ and $\unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D6E5}_{2}\subseteq \unicode[STIX]{x1D6FA}$ contain elements $s\in S,\unicode[STIX]{x1D714}_{1}\in \unicode[STIX]{x1D6E5}_{1},\unicode[STIX]{x1D714}_{2}\in \unicode[STIX]{x1D6E5}_{2}$ such that $s(\unicode[STIX]{x1D714}_{1})=\unicode[STIX]{x1D714}_{2}$. Other consequences include an analogue of ‘the Gowers trick’ of Nikolov and Pyber for general group actions, a sum-product type theorem for large subsets of a finite field, as well as applications to expanders and to the study of the diameter and width of a finite simple group.
The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$-pure subgroups of the additive group of the ring of $p$-adic integers are investigated using only elementary methods.
In this article, we propose to use the character theory of compact Lie groups and their orthogonality relations for the study of Frobenius distribution and Sato–Tate groups. The results show the advantages of this new approach in several aspects. With samples of Frobenius ranging in size much smaller than the moment statistic approach, we obtain very good approximation to the expected values of these orthogonality relations, which give useful information about the underlying Sato–Tate groups and strong evidence of the correctness of the generalized Sato–Tate conjecture. In fact, $2^{10}$ to $2^{12}$ points provide satisfactory convergence. Even for $g=2$, the classical approach using moment statistics requires about $2^{30}$ sample points to obtain such information.
An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.
We give two applications of the 2-Engel relation, classically studied in finite and Lie groups, to the 4-dimensional (4D) topological surgery conjecture. The A–B slice problem, a reformulation of the surgery conjecture for free groups, is shown to admit a homotopy solution. We also exhibit a new collection of universal surgery problems, defined using ramifications of homotopically trivial links. More generally we show how $n$-Engel relations arise from higher-order double points of surfaces in 4-space.
In this paper, we obtain some criteria for $p$-nilpotency and $p$-supersolvability of a finite group and extend some known results concerning weakly $S$-permutably embedded subgroups. In particular, we generalise the main results of Zhang et al. [‘Sylow normalizers and $p$-nilpotence of finite groups’, Comm. Algebra43(3) (2015), 1354–1363].
We study some questions on numerical semigroups of type 2. On the one hand, we investigate the relation between the genus and the Frobenius number. On the other hand, for two fixed positive integers g1, g2, we give necessary and sufficient conditions in order to have a numerical semigroup S such that {g1, g2} is the set of its pseudo-Frobenius numbers and, moreover, we explicitly build families of such numerical semigroups.
Given a commutative complete local noetherian ring $A$ with finite residue field $\boldsymbol{k}$, we show that there is a topologically finitely generated profinite group $\unicode[STIX]{x1D6E4}$ and an absolutely irreducible continuous representation $\overline{\unicode[STIX]{x1D70C}}:\unicode[STIX]{x1D6E4}\rightarrow \text{GL}_{n}(\boldsymbol{k})$ such that $A$ is a universal deformation ring for $\unicode[STIX]{x1D6E4},\overline{\unicode[STIX]{x1D70C}}$.
The trace (or zeroth Hochschild homology) of Khovanov’s Heisenberg category is identified with a quotient of the algebra $W_{1+\infty }$. This induces an action of $W_{1+\infty }$ on the center of the categorified Fock space representation, which can be identified with the action of $W_{1+\infty }$ on symmetric functions.
A compact set K ⊂ ℝn is Whitney 1-regular if the geodesic distance in K is equivalent to the Euclidean distance. Let P be the Chevalley map defined by an integrity basis of the algebra of polynomials invariant by a reflection group. This paper gives the Whitney 1-regularity of the image by P of any closed ball centred at the origin. The proof uses the works of Givental', Kostov and Arnol'd on the symmetric group. It needs a generalization of a property of the Vandermonde determinants to the Jacobian of the Chevalley mappings.
In 1981, Thompson proved that, if $n\geqslant 1$ is any integer and $G$ is any finite subgroup of $\text{GL}_{n}(\mathbb{C})$, then $G$ has a semi-invariant of degree at most $4n^{2}$. He conjectured that, in fact, there is a universal constant $C$ such that for any $n\in \mathbb{N}$ and any finite subgroup $G<\text{GL}_{n}(\mathbb{C})$, $G$ has a semi-invariant of degree at most $Cn$. This conjecture would imply that the ${\it\alpha}$-invariant ${\it\alpha}_{G}(\mathbb{P}^{n-1})$, as introduced by Tian in 1987, is at most $C$. We prove Thompson’s conjecture in this paper.
In this paper, a switch function-based gas-kinetic scheme (SF-GKS) is presented for the simulation of inviscid and viscous compressible flows. With the finite volume discretization, Euler and Navier-Stokes equations are solved and the SF-GKS is applied to evaluate the inviscid flux at cell interface. The viscous flux is obtained by the conventional smooth function approximation. Unlike the traditional gas-kinetic scheme in the calculation of inviscid flux such as Kinetic Flux Vector Splitting (KFVS), the numerical dissipation is controlled with a switch function in the present scheme. That is, the numerical dissipation is only introduced in the region around strong shock waves. As a consequence, the present SF-GKS can well capture strong shock waves and thin boundary layers simultaneously. The present SF-GKS is firstly validated by its application to the inviscid flow problems, including 1-D Euler shock tube, regular shock reflection and double Mach reflection. Then, SF-GKS is extended to solve viscous transonic and hypersonic flow problems. Good agreement between the present results and those in the literature verifies the accuracy and robustness of SF-GKS.
This paper studies the growths of endomorphisms of finitely generated semigroups. The growth is a certain dynamical characteristic describing how iterations of the endomorphism ‘stretch’ balls in the Cayley graph of the semigroup. We make a detailed study of the relation of the growth of an endomorphism of a finitely generated semigroup and the growth of the restrictions of the endomorphism to finitely generated invariant subsemigroups. We also study the possible values endomorphism growths can attain. We show the role of linear algebra in calculating the growths of endomorphisms of homogeneous semigroups. Proofs are a mixture of syntactic algebraic rewriting techniques and analytical tricks. We state various problems and suggestions for future research.
Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.
Suppose that a finite group G admits an automorphism of order 2n such that the fixed-point subgroup of the involution is nilpotent of class c. Let m = ) be the number of fixed points of . It is proved that G has a characteristic soluble subgroup of derived length bounded in terms of n, c whose index is bounded in terms of m, n, c. A similar result is also proved for Lie rings.
A monoid S is said to be right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. Left coherency is defined dually and S is coherent if it is both right and left coherent. These notions are analogous to those for a ring R (where, of course, S-acts are replaced by R-modules). Choo et al. have shown that free rings are coherent. In this paper we prove that, correspondingly, any free monoid is coherent, thus answering a question posed by Gould in 1992.
In this paper, we study Abelian and metabelian quotients of braid groups of oriented surfaces with boundary components. We provide group presentations and we prove rigidity results for these quotients arising from exact sequences related to (generalised) Fadell–Neuwirth fibrations.