We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study representations of the loop braid group LBn from the perspective of extending representations of the braid group $\mathcal{B}$n. We also pursue a generalization of the braid/Hecke/Temperlely–Lieb paradigm – uniform finite dimensional quotient algebras of the loop braid group algebras.
We augment the body of existing results on embedding finite semigroups of a certain type into 2-generator finite semigroups of the same type. The approach adopted applies to finite semigroups the idempotents of which form a band and also to finite orthodox semigroups.
We give a means of estimating the equivariant compression of a group G in terms of properties of open subgroups Gi ⊂ G whose direct limit is G. Quantifying a result by Gal, we also study the behaviour of the equivariant compression under amalgamated free products G1∗HG2 where H is of finite index in both G1 and G2.
In this paper, we extend the notion of Shintani descent to general (possibly disconnected) algebraic groups defined over a finite field $\mathbb{F}_{q}$. For this, it is essential to treat all the pure inner $\mathbb{F}_{q}$-rational forms of the algebraic group at the same time. We prove that the notion of almost characters (introduced by Shoji using Shintani descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic group whose neutral connected component is a unipotent group. We also prove that these almost characters coincide with the ‘trace of Frobenius’ functions associated with Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the proof, we also prove that the modular categories that arise from Boyarchenko and Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive integral, confirming a conjecture due to Drinfeld.
In this paper we describe methods for finding very small maximal subgroups of very large groups, with particular application to the subgroup 47:23 of the Baby Monster. This example is completely intractable by standard or naïve methods. The example of finding 31:15 inside the Thompson group $\text{Th}$ is also discussed as a test case.
Let $G$ be a finite group and $\mathsf{cd}(G)$ denote the set of complex irreducible character degrees of $G$. We prove that if $G$ is a finite group and $H$ is an almost simple group whose socle is a sporadic simple group $H_{0}$ and such that $\mathsf{cd}(G)=\mathsf{cd}(H)$, then $G^{\prime }\cong H_{0}$ and there exists an abelian subgroup $A$ of $G$ such that $G/A$ is isomorphic to $H$. In view of Huppert’s conjecture, we also provide some examples to show that $G$ is not necessarily a direct product of $A$ and $H$, so that we cannot extend the conjecture to almost simple groups.
We show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.
We investigate properties which ensure that a given finite graph is the commuting graph of a group or semigroup. We show that all graphs on at least two vertices such that no vertex is adjacent to all other vertices is the commuting graph of some semigroup. Moreover, we obtain complete classifications of the graphs with an isolated vertex or edge that are the commuting graph of a group and the cycles that are the commuting graph of a centrefree semigroup.
We introduce the concept of infinite cochain sequences and initiate a theory of homological algebra for them. We show how these sequences simplify and improve the construction of infinite coclass families (as introduced by Eick and Leedham-Green) and also how they can be applied to prove that almost all groups in such a family have equivalent Quillen categories. We also include some examples of infinite families of $p$-groups from different coclass families that have equivalent Quillen categories.
The Gehring–Martin–Tan inequality for two-generator subgroups of $\text{PSL}(2,\mathbb{C})$ is one of the best known discreteness conditions. A Kleinian group $G$ is called a Gehring–Martin–Tan group if the equality holds for the group $G$. We give a method for constructing Gehring–Martin–Tan groups with a generator of order four and present some examples. These groups arise as groups of finite-volume hyperbolic 3-orbifolds.
Let $G$ be a simple simply connected algebraic group over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. We discuss various properties of nilpotent orbits in $\mathfrak{g}$, which have previously only been considered over $\mathbb{C}$. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra $[\mathfrak{g}_{e},\mathfrak{g}_{e}]$ in the centraliser $\mathfrak{g}_{e}$ of any nilpotent element $e\in \mathfrak{g}$. Some of these calculations are used to show that the list of rigid nilpotent orbits in $\mathfrak{g}$, the classification of sheets of $\mathfrak{g}$ and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.
In this paper we propose and discuss implications of a general conjecture that there is a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K\subset S^{3}$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct three-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies that the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.
The pseudo-Frobenius numbers of a numerical semigroup are those gaps of the numerical semigroup that are maximal for the partial order induced by the semigroup. We present a procedure to detect if a given set of integers is the set of pseudo-Frobenius numbers of a numerical semigroup and, if so, to compute the set of all numerical semigroups having this set as set of pseudo-Frobenius numbers.
The last term of the lower central series of a finite group $G$ is called the nilpotent residual. It is usually denoted by $\unicode[STIX]{x1D6FE}_{\infty }(G)$. The lower Fitting series of $G$ is defined by $D_{0}(G)=G$ and $D_{i+1}(G)=\unicode[STIX]{x1D6FE}_{\infty }(D_{i}(G))$ for $i=0,1,2,\ldots \,$. These subgroups are generated by so-called coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ and $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ in elements of $G$. More precisely, the set of coprime commutators $\unicode[STIX]{x1D6FE}_{k}^{\ast }$ generates $\unicode[STIX]{x1D6FE}_{\infty }(G)$ whenever $k\geq 2$ while the set $\unicode[STIX]{x1D6FF}_{k}^{\ast }$ generates $D_{k}(G)$ for $k\geq 0$. The main result of this article is the following theorem: let $m$ be a positive integer and $G$ a finite group. Let $X\subset G$ be either the set of all $\unicode[STIX]{x1D6FE}_{k}^{\ast }$-commutators for some fixed $k\geq 2$ or the set of all $\unicode[STIX]{x1D6FF}_{k}^{\ast }$-commutators for some fixed $k\geq 1$. Suppose that the size of $a^{X}$ is at most $m$ for any $a\in G$. Then the order of $\langle X\rangle$ is $(k,m)$-bounded.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra and Number Theory 8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of irreducible binomial ideals, thus answering a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].
For an odd prime $p$, a $p$-transposition group is a group generated by a set of involutions such that the product of any two has order 2 or $p$. We first classify a family of $(G,2)$-geodesic transitive Cayley graphs ${\rm\Gamma}:=\text{Cay}(T,S)$ where $S$ is a set of involutions and $T:\text{Inn}(T)\leq G\leq T:\text{Aut}(T,S)$. In this case, $T$ is either an elementary abelian 2-group or a $p$-transposition group. Then under the further assumption that $G$ acts quasiprimitively on the vertex set of ${\rm\Gamma}$, we prove that: (1) if ${\rm\Gamma}$ is not $(G,2)$-arc transitive, then this quasiprimitive action is the holomorph affine type; (2) if $T$ is a $p$-transposition group and $S$ is a conjugacy class, then $p=3$ and ${\rm\Gamma}$ is $(G,2)$-arc transitive.
This paper contributes to the regular covers of a complete bipartite graph minus a matching, denoted $K_{n,n}-nK_{2}$, whose fiber-preserving automorphism group acts 2-arc-transitively. All such covers, when the covering transformation group $K$ is either cyclic or $\mathbb{Z}_{p}^{2}$ with $p$ a prime, have been determined in Xu and Du [‘2-arc-transitive cyclic covers of $K_{n,n}-nK_{2}$’, J. Algebraic Combin.39 (2014), 883–902] and Xu et al. [‘2-arc-transitive regular covers of $K_{n,n}-nK_{2}$ with the covering transformation group $\mathbb{Z}_{p}^{2}$’, Ars. Math. Contemp.10 (2016), 269–280]. Finally, this paper gives a classification of all such covers for $K\cong \mathbb{Z}_{p}^{3}$ with $p$ a prime.