To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbb{L}\subset A\times I$ be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of $\mathfrak{sl}_{2}(\wedge )$, the exterior current algebra of $\mathfrak{sl}_{2}$. When $\mathbb{L}$ is an $m$-framed $n$-cable of a knot $K\subset S^{3}$, its sutured annular Khovanov homology carries a commuting action of the symmetric group $\mathfrak{S}_{n}$. One therefore obtains a ‘knotted’ Schur–Weyl representation that agrees with classical $\mathfrak{sl}_{2}$ Schur–Weyl duality when $K$ is the Seifert-framed unknot.
Given a finite group $G$, the generating graph $\unicode[STIX]{x1D6E4}(G)$ of $G$ has as vertices the (nontrivial) elements of $G$ and two vertices are adjacent if and only if they are distinct and generate $G$ as group elements. In this paper we investigate properties about the degrees of the vertices of $\unicode[STIX]{x1D6E4}(G)$ when $G$ is an alternating group or a symmetric group of degree $n$. In particular, we determine the vertices of $\unicode[STIX]{x1D6E4}(G)$ having even degree and show that $\unicode[STIX]{x1D6E4}(G)$ is Eulerian if and only if $n\geqslant 3$ and $n$ and $n-1$ are not equal to a prime number congruent to 3 modulo 4.
Kang and Liu [‘On supersolvability of factorized finite groups’, Bull. Math. Sci.3 (2013), 205–210] investigate the structure of finite groups that are products of two supersoluble groups. The goal of this note is to give a correct proof of their main theorem.
Let $G$ be a finite almost simple group. It is well known that $G$ can be generated by three elements, and in previous work we showed that 6 generators suffice for all maximal subgroups of $G$. In this paper, we consider subgroups at the next level of the subgroup lattice—the so-called second maximal subgroups. We prove that with the possible exception of some families of rank 1 groups of Lie type, the number of generators of every second maximal subgroup of $G$ is bounded by an absolute constant. We also show that such a bound holds without any exceptions if and only if there are only finitely many primes $r$ for which there is a prime power $q$ such that $(q^{r}-1)/(q-1)$ is prime. The latter statement is a formidable open problem in Number Theory. Applications to random generation and polynomial growth are also given.
We use elementary skein theory to prove a version of a result of Stylianakis (Stylianakis, The normal closure of a power of a half-twist has infinite index in the mapping class group of a punctured sphere, arXiv:1511.02912) who showed that under mild restrictions on m and n, the normal closure of the mth power of a half-twist has infinite index in the mapping class group of a sphere with 2n punctures.
The geometric Satake correspondence gives an equivalence of categories between the representations of a semisimple group $G$ and the spherical perverse sheaves on the affine Grassmannian $Gr$ of its Langlands dual group. Bezrukavnikov and Finkelberg developed a derived version of this equivalence which relates the derived category of $G^{\vee }$-equivariant constructible sheaves on $Gr$ with the category of $G$-equivariant ${\mathcal{O}}(\mathfrak{g})$-modules. In this paper, we develop a K-theoretic version of the derived geometric Satake which involves the quantum group $U_{q}\mathfrak{g}$. We define a convolution category $K\operatorname{Conv}(Gr)$ whose morphism spaces are given by the $G^{\vee }\times \mathbb{C}^{\times }$-equivariant algebraic K-theory of certain fibre products. We conjecture that $K\operatorname{Conv}(Gr)$ is equivalent to a full subcategory of the category of $U_{q}\mathfrak{g}$-equivariant ${\mathcal{O}}_{q}(G)$-modules. We prove this conjecture when $G=\operatorname{SL}_{n}$. A key tool in our proof is the $\operatorname{SL}_{n}$ spider, which is a combinatorial description of the category of $U_{q}\mathfrak{sl}_{n}$ representations. By applying horizontal trace, we show that the annular $\operatorname{SL}_{n}$ spider describes the category of $U_{q}\mathfrak{sl}_{n}$-equivariant ${\mathcal{O}}_{q}(\operatorname{SL}_{n})$-modules. Then we use quantum loop algebras to relate the annular $\operatorname{SL}_{n}$ spider to $K\operatorname{Conv}(Gr)$. This gives a combinatorial/diagrammatic description of both categories and proves our conjecture.
We formulate and study Howe–Moore type properties in the setting of quantum groups and in the setting of rigid $C^{\ast }$-tensor categories. We say that a rigid $C^{\ast }$-tensor category ${\mathcal{C}}$ has the Howe–Moore property if every completely positive multiplier on ${\mathcal{C}}$ has a limit at infinity. We prove that the representation categories of $q$-deformations of connected compact simple Lie groups with trivial center satisfy the Howe–Moore property. As an immediate consequence, we deduce the Howe–Moore property for Temperley–Lieb–Jones standard invariants with principal graph $A_{\infty }$. These results form a special case of a more general result on the convergence of completely bounded multipliers on the aforementioned categories. This more general result also holds for the representation categories of the free orthogonal quantum groups and for the Kazhdan–Wenzl categories. Additionally, in the specific case of the quantum groups $\text{SU}_{q}(N)$, we are able, using a result of the first-named author, to give an explicit characterization of the central states on the quantum coordinate algebra of $\text{SU}_{q}(N)$, which coincide with the completely positive multipliers on the representation category of $\text{SU}_{q}(N)$.
We present an abstract framework for the axiomatic study of diagram algebras. Algebras that fit this framework possess analogues of both the Murphy and seminormal bases of the Hecke algebras of the symmetric groups. We show that the transition matrix between these bases is dominance unitriangular. We construct analogues of the skew Specht modules in this setting. This allows us to propose a natural tableaux theoretic framework in which to study the infamous Kronecker problem.
By homotopy linear algebra we mean the study of linear functors between slices of the ∞-category of ∞-groupoids, subject to certain finiteness conditions. After some standard definitions and results, we assemble said slices into ∞-categories to model the duality between vector spaces and profinite-dimensional vector spaces, and set up a global notion of homotopy cardinality à la Baez, Hoffnung and Walker compatible with this duality. We needed these results to support our work on incidence algebras and Möbius inversion over ∞-groupoids; we hope that they can also be of independent interest.
We discuss the internal structure of graph products of right LCM semigroups and prove that there is an abundance of examples without property (AR). Thereby we provide the first examples of right LCM semigroups lacking this seemingly common feature. The results are particularly sharp for right-angled Artin monoids.
Let $G$ be a finite solvable group and let $p$ be a prime. We prove that the intersection of the kernels of irreducible monomial $p$-Brauer characters of $G$ with degrees divisible by $p$ is $p$-closed.
Let a prime $p$ divide the order of a finite real reflection group. We classify the reflection subgroups up to conjugacy that are minimal with respect to inclusion, subject to containing a $p$-Sylow subgroup. For Weyl groups, this is achieved by an algorithm inspired by the Borel–de Siebenthal algorithm. The cases where there is not a unique conjugacy class of reflection subgroups minimally containing the $p$-Sylow subgroups are the groups of type $F_{4}$ when $p=2$ and $I_{2}(m)$ when $m\geq 6$ is even but not a power of $2$ for each odd prime divisor $p$ of $m$. The classification significantly reduces the cases required to describe the $p$-Sylow subgroups of finite real reflection groups.
We describe the Schwarzian equations for the 328 completely replicable functions with integral $q$-coefficients [Ford et al., ‘More on replicable functions’, Comm. Algebra 22 (1994) no. 13, 5175–5193].
Let $ZB$ be the center of a $p$-block $B$ of a finite group with defect group $D$. We show that the Loewy length $LL(ZB)$ of $ZB$ is bounded by $|D|/p+p-1$ provided $D$ is not cyclic. If $D$ is nonabelian, we prove the stronger bound $LL(ZB)<\min \{p^{d-1},4p^{d-2}\}$ where $|D|=p^{d}$. Conversely, we classify the blocks $B$ with $LL(ZB)\geqslant \min \{p^{d-1},4p^{d-2}\}$. This extends some results previously obtained by the present authors. Moreover, we characterize blocks with uniserial center.
The action of any group on itself by conjugation and the corresponding conjugacy relation play an important role in group theory. There have been many attempts to find notions of conjugacy in semigroups that would be useful in special classes of semigroups occurring in various areas of mathematics, such as semigroups of matrices, operator and topological semigroups, free semigroups, transition monoids for automata, semigroups given by presentations with prescribed properties, monoids of graph endomorphisms, etc. In this paper we study four notions of conjugacy for semigroups, their interconnections, similarities and dissimilarities. They appeared originally in various different settings (automata, representation theory, presentations, and transformation semigroups). Here we study them in full generality. The paper ends with a large list of open problems.
We describe a general method for expanding a truncated $G$-iterative Hasse–Schmidt derivation, where $G$ is an algebraic group. We give examples of algebraic groups for which our method works.
The classification of flag-transitive generalized quadrangles is a long-standing open problem at the interface of finite geometry and permutation group theory. Given that all known flag-transitive generalized quadrangles are also point-primitive (up to point–line duality), it is likewise natural to seek a classification of the point-primitive examples. Working toward this aim, we are led to investigate generalized quadrangles that admit a collineation group $G$ preserving a Cartesian product decomposition of the set of points. It is shown that, under a generic assumption on $G$, the number of factors of such a Cartesian product can be at most four. This result is then used to treat various types of primitive and quasiprimitive point actions. In particular, it is shown that $G$ cannot have holomorph compound O’Nan–Scott type. Our arguments also pose purely group-theoretic questions about conjugacy classes in nonabelian finite simple groups and fixities of primitive permutation groups.
We study uniform and coarse embeddings between Banach spaces and topological groups. A particular focus is put on equivariant embeddings, that is, continuous cocycles associated to continuous affine isometric actions of topological groups on separable Banach spaces with varying geometry.
Harish-Chandra induction and restriction functors play a key role in the representation theory of reductive groups over finite fields. In this paper, extending earlier work of Dat, we introduce and study generalisations of these functors which apply to a wide range of finite and profinite groups, typical examples being compact open subgroups of reductive groups over non-archimedean local fields. We prove that these generalisations are compatible with two of the tools commonly used to study the (smooth, complex) representations of such groups, namely Clifford theory and the orbit method. As a test case, we examine in detail the induction and restriction of representations from and to the Siegel Levi subgroup of the symplectic group $\text{Sp}_{4}$ over a finite local principal ideal ring of length two. We obtain in this case a Mackey-type formula for the composition of these induction and restriction functors which is a perfect analogue of the well-known formula for the composition of Harish-Chandra functors. In a different direction, we study representations of the Iwahori subgroup $I_{n}$ of $\text{GL}_{n}(F)$, where $F$ is a non-archimedean local field. We establish a bijection between the set of irreducible representations of $I_{n}$ and tuples of primitive irreducible representations of smaller Iwahori subgroups, where primitivity is defined by the vanishing of suitable restriction functors.