To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
For a finite group $G$, let $\unicode[STIX]{x1D6E5}(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. In this paper, we obtain a necessary and sufficient condition which guarantees that the complement of the character graph $\unicode[STIX]{x1D6E5}(G)$ of a finite group $G$ is a nonbipartite Hamiltonian graph.
We show that for all $m,k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever $L$ is a Latin square of order $m$ and the Cartesian product $L^{n}$ of $n$ copies of $L$ is $r$-coloured, there is a monochrome Latin subsquare of $L^{n}$, isotopic to $L^{k}$. In particular, for every prime $p$ and for all $k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever the multiplication table $L({\mathbb{Z}_{p}}^{n})$ of the group ${\mathbb{Z}_{p}}^{n}$ is $r$-coloured, there is a monochrome Latin subsquare of order $p^{k}$. On the other hand, we show that for every group $G$ of order $\leq 15$, there is a 2-colouring of $L(G)$ without a nontrivial monochrome Latin subsquare.
We construct free abelian subgroups of the group U(AΓ) of untwisted outer automorphisms of a right-angled Artin group, thus giving lower bounds on the virtual cohomological dimension. The group U(AΓ) was studied in [5] by constructing a contractible cube complex on which it acts properly and cocompactly, giving an upper bound for the virtual cohomological dimension. The ranks of our free abelian subgroups are equal to the dimensions of principal cubes in this complex. These are often of maximal dimension, so that the upper and lower bounds agree. In many cases when the principal cubes are not of maximal dimension we show there is an invariant contractible subcomplex of strictly lower dimension.
The germ of the universal isomonodromic deformation of a logarithmic connection on a stable $n$-pointed genus $g$ curve always exists in the analytic category. The first part of this article investigates under which conditions it is the analytic germification of an algebraic isomonodromic deformation. Up to some minor technical conditions, this turns out to be the case if and only if the monodromy of the connection has finite orbit under the action of the mapping class group. The second part of this work studies the dynamics of this action in the particular case of reducible rank 2 representations and genus $g>0$, allowing to classify all finite orbits. Both of these results extend recent ones concerning the genus 0 case.
We make a few observations on the absence of geometric and topological rigidity for acylindrically hyperbolic and relatively hyperbolic groups. In particular, we demonstrate the lack of a well-defined limit set for acylindrical actions on hyperbolic spaces, even under the assumption of universality. We also prove a statement about relatively hyperbolic groups inspired by a remark by Groves, Manning, and Sisto about the quasi-isometry type of combinatorial cusps. Finally, we summarize these results in a table in order to assert a meta-statement about the decay of metric rigidity as the conditions on actions on hyperbolic spaces are loosened.
We show that in general for a given group the structure of a maximal hyperbolic tower over a free group is not canonical: we construct examples of groups having hyperbolic tower structures over free subgroups which have arbitrarily large ratios between their ranks. These groups have the same first order theory as non-abelian free groups and we use them to study the weight of types in this theory.
We introduce and study various categories of (equivariant) motives of (versal) flag varieties. We relate these categories with certain categories of parabolic (Demazure) modules. We show that the motivic decomposition type of a versal flag variety depends on the direct sum decomposition type of the parabolic module. To do this we use localization techniques of Kostant and Kumar in the context of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism and its generic version. As an application, we obtain new proofs and examples of indecomposable Chow motives of versal flag varieties.
We show that a nearly square independent and identically distributed random integral matrix is surjective over the integral lattice with very high probability. This answers a question by Koplewitz [6]. Our result extends to sparse matrices as well as to matrices of dependent entries.
We extend classical density theorems of Borel and Dani–Shalom on lattices in semisimple, respectively solvable algebraic groups over local fields to approximate lattices. Our proofs are based on the observation that Zariski closures of approximate subgroups are close to algebraic subgroups. Our main tools are stationary joinings between the hull dynamical systems of discrete approximate subgroups and their Zariski closures.
We give sufficient conditions for the non-triviality of the Poisson boundary of random walks on $H(\mathbb{Z})$ and its subgroups. The group $H(\mathbb{Z})$ is the group of piecewise projective homeomorphisms over the integers defined by Monod [Groups of piecewise projective homeomorphisms. Proc. Natl Acad. Sci. USA110(12) (2013), 4524–4527]. For a finitely generated subgroup $H$ of $H(\mathbb{Z})$, we prove that either $H$ is solvable or every measure on $H$ with finite first moment that generates it as a semigroup has non-trivial Poisson boundary. In particular, we prove the non-triviality of the Poisson boundary of measures on Thompson’s group $F$ that generate it as a semigroup and have finite first moment, which answers a question by Kaimanovich [Thompson’s group $F$ is not Liouville. Groups, Graphs and Random Walks (London Mathematical Society Lecture Note Series). Eds. T. Ceccherini-Silberstein, M. Salvatori and E. Sava-Huss. Cambridge University Press, Cambridge, 2017, pp. 300–342, 7.A].
We show that the isomorphism problems for left distributive algebras, racks, quandles and kei are as complex as possible in the sense of Borel reducibility. These algebraic structures are important for their connections with the theory of knots, links and braids. In particular, Joyce showed that a quandle can be associated with any knot, and this serves as a complete invariant for tame knots. However, such a classification of tame knots heuristically seemed to be unsatisfactory, due to the apparent difficulty of the quandle isomorphism problem. Our result confirms this view, showing that, from a set-theoretic perspective, classifying tame knots by quandles replaces one problem with (a special case of) a much harder problem.
Let $G$ be a finite group with two primitive permutation representations on the sets $\unicode[STIX]{x1D6FA}_{1}$ and $\unicode[STIX]{x1D6FA}_{2}$ and let $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ be the corresponding permutation characters. We consider the case in which the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{1}$ coincides with the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{2}$, that is, for every $g\in G$, $\unicode[STIX]{x1D70B}_{1}(g)=0$ if and only if $\unicode[STIX]{x1D70B}_{2}(g)=0$. We have conjectured in Spiga [‘Permutation characters and fixed-point-free elements in permutation groups’, J. Algebra299(1) (2006), 1–7] that under this hypothesis either $\unicode[STIX]{x1D70B}_{1}=\unicode[STIX]{x1D70B}_{2}$ or one of $\unicode[STIX]{x1D70B}_{1}-\unicode[STIX]{x1D70B}_{2}$ and $\unicode[STIX]{x1D70B}_{2}-\unicode[STIX]{x1D70B}_{1}$ is a genuine character. In this paper we give evidence towards the veracity of this conjecture when the socle of $G$ is a sporadic simple group or an alternating group. In particular, the conjecture is reduced to the case of almost simple groups of Lie type.
We study lattices in a product $G=G_{1}\times \cdots \times G_{n}$ of non-discrete, compactly generated, totally disconnected locally compact (tdlc) groups. We assume that each factor is quasi just-non-compact, meaning that $G_{i}$ is non-compact and every closed normal subgroup of $G_{i}$ is discrete or cocompact (e.g. $G_{i}$ is topologically simple). We show that the set of discrete subgroups of $G$ containing a fixed cocompact lattice $\unicode[STIX]{x1D6E4}$ with dense projections is finite. The same result holds if $\unicode[STIX]{x1D6E4}$ is non-uniform, provided $G$ has Kazhdan’s property (T). We show that for any compact subset $K\subset G$, the collection of discrete subgroups $\unicode[STIX]{x1D6E4}\leqslant G$ with $G=\unicode[STIX]{x1D6E4}K$ and dense projections is uniformly discrete and hence of covolume bounded away from $0$. When the ambient group $G$ is compactly presented, we show in addition that the collection of those lattices falls into finitely many $\operatorname{Aut}(G)$-orbits. As an application, we establish finiteness results for discrete groups acting on products of locally finite graphs with semiprimitive local action on each factor. We also present several intermediate results of independent interest. Notably it is shown that if a non-discrete, compactly generated quasi just-non-compact tdlc group $G$ is a Chabauty limit of discrete subgroups, then some compact open subgroup of $G$ is an infinitely generated pro-$p$ group for some prime $p$. It is also shown that in any Kazhdan group with discrete amenable radical, the lattices form an open subset of the Chabauty space of closed subgroups.
If $\mathfrak{X}$ is a class of groups, we define a sequence $\mathfrak{X}_{1},\mathfrak{X}_{2},\ldots ,\mathfrak{X}_{k},\ldots$ of group classes by putting $\mathfrak{X}_{1}=\mathfrak{X}$ and choosing $\mathfrak{X}_{k+1}$ as the class of all groups whose nonnormal subgroups belong to $\mathfrak{X}_{k}$. In particular, if $\mathfrak{A}$ is the class of abelian groups, $\mathfrak{A}_{2}$ is the class of metahamiltonian groups, that is, groups whose nonnormal subgroups are abelian. The aim of this paper is to study the structure of $\mathfrak{X}_{k}$-groups, with special emphasis on the case $\mathfrak{X}=\mathfrak{A}$. Among other results, it will be proved that a group has a finite commutator subgroup if and only if it is locally graded and belongs to $\mathfrak{A}_{k}$ for some positive integer $k$.
We show that the finitely generated simple left orderable groups $G_{\!\unicode[STIX]{x1D70C}}$ constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-019-00880-7] are uniformly perfect—each element in the group can be expressed as a product of three commutators of elements in the group. This implies that the group does not admit any homogeneous quasimorphism. Moreover, any non-trivial action of the group on the circle, which lifts to an action on the real line, admits a global fixed point. It follows that any faithful action on the real line without a global fixed point is globally contracting. This answers Question 4 of the third author [A. Navas. Group actions on 1-manifolds: a list of very concrete open questions. Proceedings of the International Congress of Mathematicians, Vol. 2. Eds. B. Sirakov, P. Ney de Souza and M. Viana. World Scientific, Singapore, 2018, pp, 2029–2056], which asks whether such a group exists. This question has also been answered simultaneously and independently, using completely different methods, by Matte Bon and Triestino [Groups of piecewise linear homeomorphisms of flows. Preprint, 2018, arXiv:1811.12256]. To prove our results, we provide a characterization of elements of the group $G_{\!\unicode[STIX]{x1D70C}}$ which is a useful new tool in the study of these examples.
Let $\unicode[STIX]{x1D6E4}\leqslant \text{Aut}(T_{d_{1}})\times \text{Aut}(T_{d_{2}})$ be a group acting freely and transitively on the product of two regular trees of degree $d_{1}$ and $d_{2}$. We develop an algorithm that computes the closure of the projection of $\unicode[STIX]{x1D6E4}$ on $\text{Aut}(T_{d_{t}})$ under the hypothesis that $d_{t}\geqslant 6$ is even and that the local action of $\unicode[STIX]{x1D6E4}$ on $T_{d_{t}}$ contains $\text{Alt}(d_{t})$. We show that if $\unicode[STIX]{x1D6E4}$ is torsion-free and $d_{1}=d_{2}=6$, exactly seven closed subgroups of $\text{Aut}(T_{6})$ arise in this way. We also construct two new infinite families of virtually simple lattices in $\text{Aut}(T_{6})\times \text{Aut}(T_{4n})$ and in $\text{Aut}(T_{2n})\times \text{Aut}(T_{2n+1})$, respectively, for all $n\geqslant 2$. In particular, we provide an explicit presentation of a torsion-free infinite simple group on 5 generators and 10 relations, that splits as an amalgamated free product of two copies of $F_{3}$ over $F_{11}$. We include information arising from computer-assisted exhaustive searches of lattices in products of trees of small degrees. In an appendix by Pierre-Emmanuel Caprace, some of our results are used to show that abstract and relative commensurator groups of free groups are almost simple, providing partial answers to questions of Lubotzky and Lubotzky–Mozes–Zimmer.
Let $T_{n}(\mathbb{F})$ be the semigroup of all upper triangular $n\times n$ matrices over a field $\mathbb{F}$. Let $UT_{n}(\mathbb{F})$ and $UT_{n}^{\pm 1}(\mathbb{F})$ be subsemigroups of $T_{n}(\mathbb{F})$, respectively, having $0$s and/or $1$s on the main diagonal and $0$s and/or $\pm 1$s on the main diagonal. We give some sufficient conditions under which an involution semigroup is nonfinitely based. As an application, we show that $UT_{2}(\mathbb{F}),UT_{2}^{\pm 1}(\mathbb{F})$ and $T_{2}(\mathbb{F})$ as involution semigroups under the skew transposition are nonfinitely based for any field $\mathbb{F}$.
We answer a question of Skalski and Sołan (2016) about inner faithfulness of the Curran’s map of extending a quantum increasing sequence to a quantum permutation. Roughly speaking, we find a inductive setting in which the inner faithfulness of Curran’s map can be boiled down to inner faithfulness of similar map for smaller algebras and then rely on inductive generation result for quantum permutation groups of Brannan, Chirvasitu and Freslon (2018).
Let $G$ be a $p$-group and let $\unicode[STIX]{x1D712}$ be an irreducible character of $G$. The codegree of $\unicode[STIX]{x1D712}$ is given by $|G:\,\text{ker}(\unicode[STIX]{x1D712})|/\unicode[STIX]{x1D712}(1)$. If $G$ is a maximal class $p$-group that is normally monomial or has at most three character degrees, then the codegrees of $G$ are consecutive powers of $p$. If $|G|=p^{n}$ and $G$ has consecutive $p$-power codegrees up to $p^{n-1}$, then the nilpotence class of $G$ is at most 2 or $G$ has maximal class.