To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The affine Deligne–Lusztig variety $X_w(b)$ in the affine flag variety of a reductive group ${\mathbf G}$ depends on two parameters: the $\sigma $-conjugacy class $[b]$ and the element w in the Iwahori–Weyl group $\tilde {W}$ of ${\mathbf G}$. In this paper, for any given $\sigma $-conjugacy class $[b]$, we determine the nonemptiness pattern and the dimension formula of $X_w(b)$ for most $w \in \tilde {W}$.
We improve a recent construction of Andrés Navas to produce the first examples of $C^2$-undistorted diffeomorphisms of the interval that are $C^{1+\alpha }$-distorted (for every ${\alpha < 1}$). We do this via explicit computations due to the failure of an extension to class $C^{1+\alpha }$ of a classical lemma related to the work of Nancy Kopell.
Lusztig’s algorithm of computing generalized Green functions of reductive groups involves an ambiguity on certain scalars. In this paper, for reductive groups of classical type with arbitrary characteristic, we determine those scalars explicitly, and eliminate the ambiguity. Our results imply that all the generalized Green functions of classical type are computable.
In this paper, we study the structure of finite groups $G=AB$ which are a weakly mutually $sn$-permutable product of the subgroups A and B, that is, A permutes with every subnormal subgroup of B containing $A \cap B$ and B permutes with every subnormal subgroup of A containing $A \cap B$. We obtain generalisations of known results on mutually $sn$-permutable products.
The paper develops a general theory of orderability of quandles with a focus on link quandles of tame links and gives some general constructions of orderable quandles. We prove that knot quandles of many fibred prime knots are right-orderable, whereas link quandles of most non-trivial torus links are not right-orderable. As a consequence, we deduce that the knot quandle of the trefoil is neither left nor right-orderable. Further, it is proved that link quandles of certain non-trivial positive (or negative) links are not bi-orderable, which includes some alternating knots of prime determinant and alternating Montesinos links. The paper also explores interconnections between orderability of quandles and that of their enveloping groups. The results establish that orderability of link quandles behaves quite differently than that of corresponding link groups.
A permutation group G on a set A is ${\kappa }$-homogeneous iff for all $X,Y\in \bigl [ {A} \bigr ]^ {\kappa } $ with $|A\setminus X|=|A\setminus Y|=|A|$ there is a $g\in G$ with $g[X]=Y$. G is ${\kappa }$-transitive iff for any injective function f with $\operatorname {dom}(f)\cup \operatorname {ran}(f)\in \bigl [ {A} \bigr ]^ {\le {\kappa }} $ and $|A\setminus \operatorname {dom}(f)|=|A\setminus \operatorname {ran}(f)|=|A|$ there is a $g\in G$ with $f\subset g$.
Giving a partial answer to a question of P. M. Neumann [6] we show that there is an ${\omega }$-homogeneous but not ${\omega }$-transitive permutation group on a cardinal ${\lambda }$ provided
(i)${\lambda }<{\omega }_{\omega }$, or
(ii)$2^{\omega }<{\lambda }$, and ${\mu }^{\omega }={\mu }^+$ and $\Box _{\mu }$ hold for each ${\mu }\le {\lambda }$ with ${\omega }=\operatorname {cf}({\mu })<{{\mu }}$, or
(iii) our model was obtained by adding $(2^{\omega })^+$ many Cohen generic reals to some ground model.
For ${\kappa }>{\omega }$ we give a method to construct large ${\kappa }$-homogeneous, but not ${\kappa }$-transitive permutation groups. Using this method we show that there exist ${\kappa }^+$-homogeneous, but not ${\kappa }^+$-transitive permutation groups on ${\kappa }^{+n}$ for each infinite cardinal ${\kappa }$ and natural number $n\ge 1$ provided $V=L$.
A graph is edge-primitive if its automorphism group acts primitively on the edge set, and $2$-arc-transitive if its automorphism group acts transitively on the set of $2$-arcs. In this paper, we present a classification for those edge-primitive graphs that are $2$-arc-transitive and have soluble edge-stabilizers.
For every pseudovariety $\mathbf {V}$ of finite monoids, let $\mathbf {LV}$ denote the pseudovariety of all finite semigroups all of whose local submonoids belong to $\mathbf {V}$. In this paper, it is shown that, for every nontrivial semidirectly closed pseudovariety $\mathbf {V}$ of finite monoids, the pseudovariety $\mathbf {LV}$ of finite semigroups is also semidirectly closed if, and only if, the given pseudovariety $\mathbf {V}$ is local in the sense of Tilson. This finding resolves a long-standing open problem posed in the second volume of the classic monograph by Eilenberg.
We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.
We provide a microlocal necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs.
Let ${\mathbf {G}}$ be a complex algebraic reductive group and ${\mathbf {H}}\subset {\mathbf {G}}$ be a spherical algebraic subgroup. Let ${\mathfrak {g}},{\mathfrak {h}}$ denote the Lie algebras of ${\mathbf {G}}$ and ${\mathbf {H}}$, and let ${\mathfrak {h}}^{\bot }$ denote the orthogonal complement to ${\mathfrak {h}}$ in ${\mathfrak {g}}^*$. A ${\mathfrak {g}}$-module is called ${\mathfrak {h}}$-distinguished if it admits a nonzero ${\mathfrak {h}}$-invariant functional. We show that the maximal ${\mathbf {G}}$-orbit in the annihilator variety of any irreducible ${\mathfrak {h}}$-distinguished ${\mathfrak {g}}$-module intersects ${\mathfrak {h}}^{\bot }$. This generalises a result of Vogan [Vog91].
We apply this to Casselman–Wallach representations of real reductive groups to obtain information on branching problems, translation functors and Jacquet modules. Further, we prove in many cases that – as suggested by [Pra19, Question 1] – when H is a symmetric subgroup of a real reductive group G, the existence of a tempered H-distinguished representation of G implies the existence of a generic H-distinguished representation of G.
Many of the models studied in the theory of automorphic forms involve an additive character on the unipotent radical of the subgroup $\bf H$, and we have devised a twisted version of our theorem that yields necessary conditions for the existence of those mixed models. Our method of proof here is inspired by the theory of modules over W-algebras. As an application of our theorem we derive necessary conditions for the existence of Rankin–Selberg, Bessel, Klyachko and Shalika models. Our results are compatible with the recent Gan–Gross–Prasad conjectures for nongeneric representations [GGP20].
Finally, we provide more general results that ease the sphericity assumption on the subgroups, and apply them to local theta correspondence in type II and to degenerate Whittaker models.
For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$. However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers.
Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.
We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalised exponents. Our refinement gives a uniform proof and generalisation of a recent theorem of the second author.
We prove that for positive integers $m \geq 1, n \geq 1$ and a prime number $p \neq 2,3$ there are finitely many finite m-generated Moufang loops of exponent $p^n$.
We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field ${\mathbb K}$ of characteristic $\neq 2$ from scratch. We show that the formal model of a semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a $\mathbb {Z}$-model and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic. This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their limits proved in [K, Math. Ann. 371 no.2 (2018)]) when $\mathsf {char}\, {\mathbb K} =0$ or $\gg 0$, and the higher-cohomology vanishing of their nef line bundles in arbitrary characteristic $\neq 2$. Some particular cases of these results play crucial roles in our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between affine and quantum K-groups of a flag manifold.
Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $. We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$. In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$, the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the $\ell $-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie $\ell $-adique de ces tours.
Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$, where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.