To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Set-theoretic solutions to the Yang–Baxter equation can be classified by their universal coverings and their fundamental groupoids. Extending previous results, universal coverings of irreducible involutive solutions are classified in the degenerate case. These solutions are described in terms of a group with a distinguished self-map. The classification in the nondegenerate case is simplified and compared with the description in the degenerate case.
Given a closed, orientable, compact surface S of constant negative curvature and genus $g \geq 2$, we study the measure-theoretic entropy of the Bowen–Series boundary map with respect to its smooth invariant measure. We obtain an explicit formula for the entropy that only depends on the perimeter of the $(8g-4)$-sided fundamental polygon of the surface S and its genus. Using this, we analyze how the entropy changes in the Teichmüller space of S and prove the following flexibility result: the measure-theoretic entropy takes all values between 0 and a maximum that is achieved on the surface that admits a regular $(8g-4)$-sided fundamental polygon. We also compare the measure-theoretic entropy to the topological entropy of these maps and show that the smooth invariant measure is not a measure of maximal entropy.
We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.
For a given inverse semigroup, one can associate an étale groupoid which is called the universal groupoid. Our motivation is studying the relation between inverse semigroups and associated étale groupoids. In this paper, we focus on congruences of inverse semigroups, which is a fundamental concept for considering quotients of inverse semigroups. We prove that a congruence of an inverse semigroup induces a closed invariant set and a normal subgroupoid of the universal groupoid. Then we show that the universal groupoid associated to a quotient inverse semigroup is described by the restriction and quotient of the original universal groupoid. Finally we compute invariant sets and normal subgroupoids induced by special congruences including abelianization.
Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n ∈ $\mathbb N$ for which there exists a surjection between the n- and m-string braid groups of an orientable surface without boundary. This result is essentially based on specific properties of their lower central series, and the proof is completely combinatorial. We provide similar but partial results in the case of orientable surfaces with boundary components and of non-orientable surfaces without boundary. We give also several results about the classification of different representations of surface braid groups in symmetric groups.
We consider the Birman–Hilden inclusion $\phi\colon\Br_{2g+1}\to\Gamma_{g,1}$ of the braid group into the mapping class group of an orientable surface with boundary, and prove that $\phi$ is stably trivial in homology with twisted coefficients in the symplectic representation $H_1(\Sigma_{g,1})$ of the mapping class group; this generalises a result of Song and Tillmann regarding homology with constant coefficients. Furthermore we show that the stable homology of the braid group with coefficients in $\phi^*(H_1(\Sigma_{g,1}))$ has only 4-torsion.
The paper gives a simple proof of Graev’s theorem (asserting that the free product of Hausdorff topological groups is Hausdorff) for a particular case which includes the countable case of $k_\omega $-groups and the countable case of Lindelöf P-groups. For this it is shown that in these particular cases the topology of the free product of Hausdorff topological groups coincides with the $X_0$-topology in the Mal’cev sense, where X is the disjoint union of the topological groups identifying their units.
We prove that the invariably generating graph of a finite group can have an arbitrarily large number of connected components with at least two vertices.
Let W be a 2-dimensional Coxeter group, that is, one with 1/mst + 1/msr + 1/mtr ≤ 1 for all triples of distinct s, t, r ∈ S. We prove that W is biautomatic. We do it by showing that a natural geodesic language is regular (for arbitrary W), and satisfies the fellow traveller property. As a consequence, by the work of Jacek Świątkowski, groups acting properly and cocompactly on buildings of type W are also biautomatic. We also show that the fellow traveller property for the natural language fails for $W=\widetilde {A}_3$.
In 1978, Yu. F. Borisov presented an axiom system using a few basic assumptions and four explicit axioms, the fourth being a formulation of the relativity principle, and he demonstrated that this axiom system had (up to choice of units) only two models: a relativistic one in which worldview transformations are Poincaré transformations and a classical one in which they are Galilean. In this paper, we reformulate Borisov’s original four axioms within an intuitively simple, but strictly formal, first-order logic framework, and convert his basic background assumptions into explicit axioms. Instead of assuming that the structure of physical quantities is the field of real numbers, we assume only that they form an ordered field. This allows us to investigate how Borisov’s theorem depends on the structure of quantities.
We demonstrate (as our main contribution) how to construct Euclidean, Galilean, and Poincaré models of Borisov’s axiom system over every non-Archimedean field. We also demonstrate the existence of an infinite descending chain of models and transformation groups in each of these three cases, something that is not possible over Archimedean fields.
As an application, we note that there is a model of Borisov’s axioms that satisfies the relativity principle, and in which the worldview transformations are Euclidean isometries. Over the field of reals it is easy to eliminate this model using natural axioms concerning time’s arrow and the absence of instantaneous motion. In the case of non-Archimedean fields, however, the Euclidean isometries appear intrinsically as worldview transformations in models of Borisov’s axioms, and neither the assumption of time’s arrow, nor the rejection of instantaneous motion, can eliminate them.
This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that $p_n\asymp R^{-n}n^{-3/2}$ for spectrally positive-recurrent random walks, where $p_n$ is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.
Let G be a reductive p-adic group which splits over an unramified extension of the ground field. Hiraga, Ichino and Ikeda [24] conjectured that the formal degree of a square-integrable G-representation $\pi $ can be expressed in terms of the adjoint $\gamma $-factor of the enhanced L-parameter of $\pi $. A similar conjecture was posed for the Plancherel densities of tempered irreducible G-representations.
We prove these conjectures for unipotent G-representations. We also derive explicit formulas for the involved adjoint $\gamma $-factors.
A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $2$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G, then it is of $p'$-order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$-subgroups. We present two applications of this last result, one to tame fusion systems.
The Σ-invariants of Bieri–Neumann–Strebel and Bieri–Renz involve an action of a discrete group G on a geometrically suitable space M. In the early versions, M was always a finite-dimensional Euclidean space on which G acted by translations. A substantial literature exists on this, connecting the invariants to group theory and to tropical geometry (which, actually, Σ-theory anticipated). More recently, we have generalized these invariants to the case where M is a proper CAT(0) space on which G acts by isometries. The “zeroth stage” of this was developed in our paper [BG16]. The present paper provides a higher-dimensional extension of the theory to the “nth stage” for any n.
In this note, we compute the centers of the categories of tilting modules for G = SL2 in prime characteristic, of tilting modules for the corresponding quantum group at a complex root of unity, and of projective GgT-modules when g = 1, 2.
Let $G(n)={\textrm {Sp}}(n,1)$ or ${\textrm {SU}}(n,1)$. We classify conjugation orbits of generic pairs of loxodromic elements in $G(n)$. Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for ${\textrm {SU}}(3,1)$. We extend this notion and classify $G(n)$-conjugation orbits of such elements in arbitrary dimension. For $n=3$, they give a subspace that can be parametrized using a set of coordinates whose local dimension equals the dimension of the underlying group. We further construct twist-bend parameters to glue such representations and obtain local parametrization for generic representations of the fundamental group of a closed (genus $g \geq 2$) oriented surface into $G(3)$.
We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$-groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$, the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$, which implies hyperbolicity.
We show that Gromov’s monsters arising from i.i.d. random labellings of expanders (that we call random Gromov’s monsters) have linear divergence along a subsequence, so that in particular they do not contain Morse quasigeodesics, and they are not quasi-isometric to Gromov’s monsters arising from graphical small cancellation labellings of expanders.
Moreover, by further studying the divergence function, we show that there are uncountably many quasi-isometry classes of random Gromov’s monsters.
We study the fields of values of the irreducible characters of a finite group of degree not divisible by a prime p. In the case where $p=2$, we fully characterise these fields. In order to accomplish this, we generalise the main result of [ILNT] to higher irrationalities. We do the same for odd primes, except that in this case the analogous results hold modulo a simple-to-state conjecture on the character values of quasi-simple groups.