To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
From any two median spaces $X$ and $Y$, we construct a new median space $X \circledast Y$, referred to as the diadem product of $X$ and $Y$, and we show that this construction is compatible with wreath products in the following sense: given two finitely generated groups $G,\,H$ and two (equivariant) coarse embeddings into median spaces $X,\,Y$, there exist a(n equivariant) coarse embedding $G\wr H \to X \circledast Y$. The construction offers a unified point of view on various questions related to the Hilbertian geometry of wreath products of groups.
Roelcke non-precompactness, simplicity, and non-amenability of the automorphism group of the Fraïssé limit of finite Heyting algebras are proved among others.
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations between the corresponding Dehn twists.
We show that every isometric action on a Cantor set is conjugate to an inverse limit of actions on finite sets; and that every faithful isometric action by a finitely generated amenable group is residually finite.
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types $A_2$, $B_2$ and $G_2$ factorised by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length 3 and sphericity 2. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type $D_4$ with torsion 3 by generators and relations.
The purpose of this paper is to investigate the properties of spectral and tiling subsets of cyclic groups, with an eye towards the spectral set conjecture [9] in one dimension, which states that a bounded measurable subset of $\mathbb {R}$ accepts an orthogonal basis of exponentials if and only if it tiles $\mathbb {R}$ by translations. This conjecture is strongly connected to its discrete counterpart, namely that, in every finite cyclic group, a subset is spectral if and only if it is a tile. The tools presented herein are refinements of recent ones used in the setting of cyclic groups; the structure of vanishing sums of roots of unity [20] is a prevalent notion throughout the text, as well as the structure of tiling subsets of integers [1]. We manage to prove the conjecture for cyclic groups of order $p^{m}q^{n}$, when one of the exponents is $\leq 6$ or when $p^{m-2}<q^{4}$, and also prove that a tiling subset of a cyclic group of order $p_{1}^{m}p_{2}\dotsm p_{n}$ is spectral.
In this paper we construct an action of the affine Hecke category (in its ‘Soergel bimodules’ incarnation) on the principal block of representations of a simply connected semisimple algebraic group over an algebraically closed field of characteristic bigger than the Coxeter number. This confirms a conjecture of G. Williamson and the second author, and provides a new proof of the tilting character formula in terms of antispherical $p$-Kazhdan–Lusztig polynomials.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
We investigate some properties of complex structures on Lie algebras. In particular, we focus on nilpotent complex structures that are characterised by suitable J-invariant ascending or descending central series, $\mathfrak {d}^{\,j}$ and $\mathfrak {d}_j$, respectively. We introduce a new descending series $\mathfrak {p}_j$ and use it to prove a new characterisation of nilpotent complex structures. We also examine whether nilpotent complex structures on stratified Lie algebras preserve the strata. We find that there exists a J-invariant stratification on a step $2$ nilpotent Lie algebra with a complex structure.
We prove that for any transitive subshift X with word complexity function $c_n(X)$, if $\liminf ({\log (c_n(X)/n)}/({\log \log \log n})) = 0$, then the quotient group ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ of the automorphism group of X by the subgroup generated by the shift $\sigma $ is locally finite. We prove that significantly weaker upper bounds on $c_n(X)$ imply the same conclusion if the gap conjecture from geometric group theory is true. Our proofs rely on a general upper bound for the number of automorphisms of X of range n in terms of word complexity, which may be of independent interest. As an application, we are also able to prove that for any subshift X, if ${c_n(X)}/{n^2 (\log n)^{-1}} \rightarrow 0$, then $\mathrm {Aut}(X,\sigma )$ is amenable, improving a result of Cyr and Kra. In the opposite direction, we show that for any countable infinite locally finite group G and any unbounded increasing $f: \mathbb {N} \rightarrow \mathbb {N}$, there exists a minimal subshift X with ${{\mathrm {Aut}(X,\sigma )}/{\langle \sigma \rangle }}$ isomorphic to G and ${c_n(X)}/{nf(n)} \rightarrow 0$.
A connected, locally finite graph $\Gamma $ is a Cayley–Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on $\Gamma $ with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if $T_{d}$ denotes the d-regular tree, then the minimal degree of $\mathrm{Aut}(T_{d})$ is d for all $d\geq 2$.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
We present a family of counterexamples to a question proposed recently by Moretó concerning the character codegrees and the element orders of a finite solvable group.
In this article, we generalize Haglund and Wise’s theory of special cube complexes to groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median graphs, and we show that a group which acts specially on a quasi-median graph with finitely many orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-stabilizers. In the second part of the article, we apply the theory to fundamental groups of some graphs of groups called right-angled graphs of groups.
The cusped hyperbolic n-orbifolds of minimal volume are well known for $n\leq 9$. Their fundamental groups are related to the Coxeter n-simplex groups $\Gamma _{n}$. In this work, we prove that $\Gamma _{n}$ has minimal growth rate among all non-cocompact Coxeter groups of finite covolume in $\textrm{Isom}\mathbb H^{n}$. In this way, we extend previous results of Floyd for $n=2$ and of Kellerhals for $n=3$, respectively. Our proof is a generalization of the methods developed together with Kellerhals for the cocompact case.
The ring $\mathbb Z_{d}$ of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree $T_{d}$. Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz mappings from $\mathbb Z_{d}$ to itself. In the case when $d=p$ is prime, Anashin [‘Automata finiteness criterion in terms of van der Put series of automata functions’,p-Adic Numbers Ultrametric Anal. Appl.4(2) (2012), 151–160] showed that $f\in \mathrm {Lip}^{1}(\mathbb Z_{p})$ is defined by a finite Mealy automaton if and only if the reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of $\mathbb Z_{p}\cap \mathbb Q$. We generalize this result to arbitrary integers $d\geq 2$ and describe the explicit connection between the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of the generators of the lamplighter group acting on the binary rooted tree.
We investigate quantitative aspects of the locally embeddable into finite groups (LEF) property for subgroups of the topological full group of a two-sided minimal subshift over a finite alphabet, measured via the LEF growth function. We show that the LEF growth of may be bounded from above and below in terms of the recurrence function and the complexity function of the subshift, respectively. As an application, we construct groups of previously unseen LEF growth types, and exhibit a continuum of finitely generated LEF groups which may be distinguished from one another by their LEF growth.
In this paper we give a complete description of the Bieri–Neumann–Strebel–Renz invariants of the Lodha–Moore groups. The second author previously computed the first two invariants, and here we show that all the higher invariants coincide with the second one, which finishes the complete computation. As a consequence, we present a complete picture of the finiteness properties of normal subgroups of the first Lodha–Moore group. In particular, we show that every finitely presented normal subgroup of the group is of type $\textrm{F}_\infty$, answering a question posed in Oberwolfach in 2018. The proof involves applying a variation of Bestvina–Brady discrete Morse theory to the so called cluster complex X introduced by the first author. As an application, we also demonstrate that a certain simple group S previously constructed by the first author is of type $\textrm{F}_\infty$. This provides the first example of a type $\textrm{F}_\infty$ simple group that acts faithfully on the circle by homeomorphisms, but does not admit any nontrivial action by $C^1$-diffeomorphisms, nor by piecewise linear homeomorphisms, on any 1-manifold.