To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type $\mathsf {F}_4$, $\mathsf {E}_6$, or $\mathsf {E}_7$. We study these objects over an arbitrary base ring R, with particular attention to the case $R = \mathbb {Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space $\mathbb{H}^d$ in such a way that it admits a transitive action by isometries of $\mathbb{H}^d$. Let $p_{\text{a}}$ be the supremum of all percolation parameters such that no point at infinity of $\mathbb{H}^d$ lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter $p < p_{\text{a}}$, almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.
We categorify the commutation of Nakajima’s Heisenberg operators $P_{\pm 1}$ andtheir infinitely many counterparts in the quantum toroidal algebra $U_{q_1,q_2}(\ddot {gl_1})$ acting on the Grothendieck groups of Hilbert schemes from [10, 24, 26, 32]. By combining our result with [26], one obtains a geometric categorical $U_{q_1,q_2}(\ddot {gl_1})$ action on the derived category of Hilbert schemes. Our main technical tool is a detailed geometric study of certain nested Hilbert schemes of triples and quadruples, through the lens of the minimal model program, by showing that these nested Hilbert schemes are either canonical or semidivisorial log terminal singularities.
Let k be an algebraically closed field of prime characteristic p. Let $kGe$ be a block of a group algebra of a finite group G, with normal defect group P and abelian $p'$ inertial quotient L. Then we show that $kGe$ is a matrix algebra over a quantised version of the group algebra of a semidirect product of P with a certain subgroup of L. To do this, we first examine the associated graded algebra, using a Jennings–Quillen style theorem.
As an example, we calculate the associated graded of the basic algebra of the nonprincipal block in the case of a semidirect product of an extraspecial p-group P of exponent p and order $p^3$ with a quaternion group of order eight with the centre acting trivially. In the case of $p=3$, we give explicit generators and relations for the basic algebra as a quantised version of $kP$. As a second example, we give explicit generators and relations in the case of a group of shape $2^{1+4}:3^{1+2}$ in characteristic two.
We present a quantitative isolation property of the lifts of properly immersed geodesic planes in the frame bundle of a geometrically finite hyperbolic $3$-manifold. Our estimates are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic planes, with degree given by the modified critical exponents.
We generalize the works of Pappas–Rapoport–Zhu on twisted affine Grassmannians to the wildly ramified case under mild assumptions. This rests on a construction of certain smooth affine $\mathbb {Z}[t]$-groups with connected fibers of parahoric type, motivated by previous work of Tits. The resulting $\mathbb {F}_p(t)$-groups are pseudo-reductive and sometimes non-standard in the sense of Conrad–Gabber–Prasad, and their $\mathbb {F}_p [\hspace {-0,5mm}[ {t} ]\hspace {-0,5mm}] $-models are parahoric in a generalized sense. We study their affine Grassmannians, proving normality of Schubert varieties and Zhu’s coherence theorem.
A generating set S for a group G is independent if the subgroup generated by $S\setminus \{s\}$ is properly contained in G for all $s \in S.$ We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.
Let q be an odd prime power and suppose that $a,b\in \mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$. Denote by $\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\alpha \approx 0.029\,08$ and $\beta \approx 0.012\,59$ such that if $q\equiv 1 \bmod 4$, then $\lim \sigma (q)/q^2 = \alpha $, and if $q \equiv 3 \bmod 4$, then $\lim \sigma (q)/q^2 = \beta $.
A subset Y of the general linear group $\text{GL}(n,q)$ is called t-intersecting if $\text{rk}(x-y)\le n-t$ for all $x,y\in Y$, or equivalently x and y agree pointwise on a t-dimensional subspace of $\mathbb{F}_q^n$ for all $x,y\in Y$. We show that, if n is sufficiently large compared to t, the size of every such t-intersecting set is at most that of the stabiliser of a basis of a t-dimensional subspace of $\mathbb{F}_q^n$. In case of equality, the characteristic vector of Y is a linear combination of the characteristic vectors of the cosets of these stabilisers. We also give similar results for subsets of $\text{GL}(n,q)$ that intersect not necessarily pointwise in t-dimensional subspaces of $\mathbb{F}_q^n$ and for cross-intersecting subsets of $\text{GL}(n,q)$. These results may be viewed as variants of the classical Erdős–Ko–Rado Theorem in extremal set theory and are q-analogs of corresponding results known for the symmetric group. Our methods are based on eigenvalue techniques to estimate the size of the largest independent sets in graphs and crucially involve the representation theory of $\text{GL}(n,q)$.
We classify all mutation-finite quivers with real weights. We show that every finite mutation class not originating from an integer skew-symmetrisable matrix has a geometric realisation by reflections. We also explore the structure of acyclic representatives in finite mutation classes and their relations to acute-angled simplicial domains in the corresponding reflection groups.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
A natural operation on numerical semigroups is taking a quotient by a positive integer. If $\mathcal {S}$ is a quotient of a numerical semigroup with k generators, we call $\mathcal {S}$ a k-quotient. We give a necessary condition for a given numerical semigroup $\mathcal {S}$ to be a k-quotient and present, for each $k \ge 3$, the first known family of numerical semigroups that cannot be written as a k-quotient. We also examine the probability that a randomly selected numerical semigroup with k generators is a k-quotient.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in $\mathsf {ZF}$, i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.
Let G be a finite transitive group on a set $\Omega $, let $\alpha \in \Omega $, and let $G_{\alpha }$ be the stabilizer of the point $\alpha $ in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of $\Omega $ lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than $5/6$, then each element of $\Omega $ lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound $5/6$.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
In this paper, the nilspace approach to higher-order Fourier analysis is developed in the setting of vector spaces over a prime field $\mathbb {F}_p$, with applications mainly in ergodic theory. A key requisite for this development is to identify a class of nilspaces adequate for this setting. We introduce such a class, whose members we call p-homogeneous nilspaces. One of our main results characterizes these objects in terms of a simple algebraic property. We then prove various further results on these nilspaces, leading to a structure theorem describing every finite p-homogeneous nilspace as the image, under a nilspace fibration, of a member of a simple family of filtered finite abelian p-groups. The applications include a description of the Host–Kra factors of ergodic $\mathbb {F}_p^\omega $-systems as p-homogeneous nilspace systems. This enables the analysis of these factors to be reduced to the study of such nilspace systems, with central questions on the factors thus becoming purely algebraic problems on finite nilspaces. We illustrate this approach by proving that for $k\leq p+1$ the kth Host–Kra factor is an Abramov system of order at most k, extending a result of Bergelson–Tao–Ziegler that holds for $k< p$. We illustrate the utility of p-homogeneous nilspaces also by showing that the structure theorem yields a new proof of the Tao–Ziegler inverse theorem for Gowers norms on $\mathbb {F}_p^n$.
Let G be a simple algebraic group of adjoint type over an algebraically closed field k of bad characteristic. We show that its sheets of conjugacy classes are parametrized by G-conjugacy classes of pairs $(M,{\mathcal O})$ where M is the identity component of the centralizer of a semisimple element in G and ${\mathcal O}$ is a rigid unipotent conjugacy class in M, in analogy with the good characteristic case.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of $\mathbb {Q}$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology.