We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector is introduced. The methods employed include $\ell^2$ decoupling, small cap decoupling and estimates of exponential sums.
Dispersive and Strichartz estimates are obtained for solutions to the wave equation with a Laguerre potential in spatial dimension three. To obtain the desired dispersive estimate, based on the spectral properties of the Schrödinger operator involved, we subsequently prove the dispersive estimate for the corresponding Schrödinger semigroup, obtain a Gaussian-type upper bound, establish Bernstein-type inequalities, and finally pass to the Müller–Seeger’s subordination formula. The desired Strichartz estimates follow by the established dispersive estimate and the standard argument of Keel–Tao.
In this paper, we obtain the $H^{p_1}\times H^{p_2}\times H^{p_3}\to H^p$ boundedness for trilinear Fourier multiplier operators, which is a trilinear analogue of the multiplier theorem of Calderón and Torchinsky [4]. Our result improves the trilinear estimate in [22] by additionally assuming an appropriate vanishing moment condition, which is natural in the boundedness into the Hardy space $H^p$ for $0<p\le 1$.
We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, k-point configuration sets given by
for a compact $E\subset \mathbb {R}^d$ and $k\ge 3$. We show that $\Delta ^{\mathrm{diag}}(E)$ has non-empty interior if the Hausdorff dimension of E satisfies (0.1)
We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$, then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$. For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$.
Let H be the Hermite operator $-\Delta +|x|^2$ on $\mathbb {R}^n$. We prove a weighted $L^2$ estimate of the maximal commutator operator $\sup _{R>0}|[b, S_R^\lambda (H)](f)|$, where $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ is the commutator of a BMO function b and the Bochner–Riesz means $S_R^\lambda (H)$ for the Hermite operator H. As an application, we obtain the almost everywhere convergence of $[b, S_R^\lambda (H)](f)$ for large $\lambda $ and $f\in L^p(\mathbb {R}^n)$.
The notion of indicator of an analytic function, that describes the function’s growth along rays, was introduced by Phragmen and Lindelöf. Trigonometric convexity is a defining property of the indicator. For multivariate cases, an analogous property of trigonometric convexity was not known so far. We prove the property of trigonometric convexity for the indicator of multivariate analytic functions, introduced by Ivanov. The results that we obtain are sharp. Derivation of a multidimensional analogue of the inverse Fourier transform in a sector and obtaining estimates on its decay is an important step of our proof.
where $f: X \to {\Bbb R}$, X a set, finite or infinite, and K and $\mu $ denote a suitable kernel and a measure, respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form
holds for all nonnegative real-valued functions $f_i$, $1\le i\le n$, on X. The basic question is, how does the structure of G and the mapping properties of the operator $T_K$ influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case $X={\Bbb F}_q^d$, the d-dimensional vector space over the field with q elements, $K(x^i,x^j)$ is the indicator function of the sphere evaluated at $x^i-x^j$, and connected graphs G with at most four vertices.
The main purpose of this paper is to prove Hörmander’s $L^p$–$L^q$ boundedness of Fourier multipliers on commutative hypergroups. We carry out this objective by establishing the Paley inequality and Hausdorff–Young–Paley inequality for commutative hypergroups. We show the $L^p$–$L^q$ boundedness of the spectral multipliers for the generalised radial Laplacian by examining our results on Chébli–Trimèche hypergroups. As a consequence, we obtain embedding theorems and time asymptotics for the $L^p$–$L^q$ norms of the heat kernel for generalised radial Laplacian.
For decreasing sequences $\{t_{n}\}_{n=1}^{\infty }$ converging to zero and initial data $f\in H^s(\mathbb {R}^N)$, $N\geq 2$, we consider the almost everywhere convergence problem for sequences of Schrödinger means ${\rm e}^{it_{n}\Delta }f$, which was proposed by Sjölin, and was open until recently. In this paper, we prove that if $\{t_n\}_{n=1}^{\infty }$ belongs to Lorentz space ${\ell }^{r,\infty }(\mathbb {N})$, then the a.e. convergence results hold for $s>\min \{\frac {r}{\frac {N+1}{N}r+1},\,\frac {N}{2(N+1)}\}$. Inspired by the work of Lucà-Rogers, we construct a counterexample to show that our a.e. convergence results are sharp (up to endpoints). Our results imply that when $0< r<\frac {N}{N+1}$, there is a gain over the a.e. convergence result from Du-Guth-Li and Du-Zhang, but not when $r\geq \frac {N}{N+1}$, even though we are in the discrete case. Our approach can also be applied to get the a.e. convergence results for the fractional Schrödinger means and nonelliptic Schrödinger means.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
We prove discrete restriction estimates for a broad class of hypersurfaces arising in seminal work of Birch. To do so, we use a variant of Bourgain’s arithmetic version of the Tomas–Stein method and Magyar’s decomposition of the Fourier transform of the indicator function of the integer points on a hypersurface.
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal (local in time) estimates for the solution to the Cauchy problem for variable-coefficient evolutionary partial differential equations. The estimates are achieved by introducing the notions of Schrödinger and general oscillatory integral operators with inhomogeneous phase functions and prove sharp local and global regularity results for these in Besov–Lipschitz and Triebel–Lizorkin spaces.
We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables $\left\{X_k : k \geq 1\right\}$ uniformly distributed in $(0,1)$ and independent, we consider the following random sets of directions
\begin{equation*}\Omega_{\text{rand},\text{lin}} := \left\{ \frac{\pi X_k}{k}: k \geq 1\right\}\end{equation*}
We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on $L^p({\mathbb{R}}^2)$ for any $1 \lt p \lt \infty$.
We study $L^p$-Sobolev regularity estimates for the restricted X-ray transforms generated by nondegenerate curves. Making use of the inductive strategy in the recent work by the authors, we establish the sharp $L^p$-regularity estimates for the restricted X-ray transforms in $\mathbb {R}^{d+1}$, $d\ge 3$. This extends the result due to Pramanik and Seeger in $\mathbb {R}^3$.
We discuss how countable subadditivity of operators can be derived from subadditivity under mild forms of continuity, and provide examples manifesting such circumstances.
For the kernel $B_{\kappa ,a}(x,y)$ of the $(\kappa ,a)$-generalized Fourier transform $\mathcal {F}_{\kappa ,a}$, acting in $L^{2}(\mathbb {R}^{d})$ with the weight $|x|^{a-2}v_{\kappa }(x)$, where $v_{\kappa }$ is the Dunkl weight, we study the important question of when $\|B_{\kappa ,a}\|_{\infty }=B_{\kappa ,a}(0,0)=1$. The positive answer was known for $d\ge 2$ and $\frac {2}{a}\in \mathbb {N}$. We investigate the case $d=1$ and $\frac {2}{a}\in \mathbb {N}$. Moreover, we give sufficient conditions on parameters for $\|B_{\kappa ,a}\|_{\infty }>1$ to hold with $d\ge 1$ and any a.
We also study the image of the Schwartz space under the $\mathcal {F}_{\kappa ,a}$ transform. In particular, we obtain that $\mathcal {F}_{\kappa ,a}(\mathcal {S}(\mathbb {R}^d))=\mathcal {S}(\mathbb {R}^d)$ only if $a=2$. Finally, extending the Dunkl transform, we introduce nondeformed transforms generated by $\mathcal {F}_{\kappa ,a}$ and study their main properties.
The aim of this note is twofold. First, we prove an abstract version of the Calderón transference principle for inequalities of admissible type in the general commutative multilinear and multiparameter setting. Such an operation does not increase the constants in the transferred inequalities. Second, we use the last information to study a certain dichotomy arising in problems of finding the best constants in the weak type $(1,1)$ and strong type $(p,p)$ inequalities for one-parameter ergodic maximal operators.
Let $\mathcal {M}$ be an Ahlfors $n$-regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$-harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$. This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.