We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that, if $b\in L^{1}(0,T;L_{\operatorname{loc}}^{1}(\mathbb{R}))$ has a spatial derivative in the John–Nirenberg space $\operatorname{BMO}(\mathbb{R})$, then it generates a unique flow $\unicode[STIX]{x1D719}(t,\cdot )$ which has an $A_{\infty }(\mathbb{R})$ density for each time $t\in [0,T]$. Our condition on the map $b$ is not only optimal but also produces a sharp quantitative estimate for the density. As a killer application we achieve the well-posedness for a Cauchy problem of the transport equation in $\operatorname{BMO}(\mathbb{R})$.
In this note we give simple proofs of several results involving maximal truncated Calderón–Zygmund operators in the general setting of rearrangement-invariant quasi-Banach function spaces by sparse domination. Our techniques allow us to track the dependence of the constants in weighted norm inequalities; additionally, our results hold in ℝn as well as in many spaces of homogeneous type.
The Friedgut–Kalai–Naor (FKN) theorem states that if ƒ is a Boolean function on the Boolean cube which is close to degree one, then ƒ is close to a dictator, a function depending on a single coordinate. The author has extended the theorem to the slice, the subset of the Boolean cube consisting of all vectors with fixed Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice.
As an application, we prove a stability version of the edge-isoperimetric inequality for settings of parameters in which the optimal set is a dictator.
Let $p(\cdot ):\mathbb{R}^{n}\rightarrow (0,\infty )$ be a variable exponent function satisfying the globally log-Hölder continuous condition. In this paper, we obtain the boundedness of paraproduct operators $\unicode[STIX]{x1D70B}_{b}$ on variable Hardy spaces $H^{p(\cdot )}(\mathbb{R}^{n})$, where $b\in \text{BMO}(\mathbb{R}^{n})$. As an application, we show that non-convolution type Calderón–Zygmund operators $T$ are bounded on $H^{p(\cdot )}(\mathbb{R}^{n})$ if and only if $T^{\ast }1=0$, where $\frac{n}{n+\unicode[STIX]{x1D716}}<\text{ess inf}_{x\in \mathbb{R}^{n}}p\leqslant \text{ess sup}_{x\in \mathbb{R}^{n}}p\leqslant 1$ and $\unicode[STIX]{x1D716}$ is the regular exponent of kernel of $T$. Our approach relies on the discrete version of Calderón’s reproducing formula, discrete Littlewood–Paley–Stein theory, almost orthogonal estimates, and variable exponents analysis techniques. These results still hold for variable Hardy space on spaces of homogeneous type by using our methods.
In this paper, we investigate the weighted multilinear boundedness properties of the maximal higher order Calderón commutator for the dimensions larger than two. We establish all weighted multilinear estimates on the product of the $L^{p}(\mathbb{R}^{d},w)$ space, including some peculiar endpoint estimates of the higher dimensional Calderón commutator.
Let φ : ℝn × [0, ∞) → [0, ∞) satisfy that φ(x, · ), for any given x ∈ ℝn, is an Orlicz function and φ( · , t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞). The (weak) Musielak–Orlicz Hardy space Hφ(ℝn) (WHφ(ℝn)) generalizes both the weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has wide generality. In this paper, two boundedness criteria for both linear operators and positive sublinear operators from Hφ(ℝn) to Hφ(ℝn) or from Hφ(ℝn) to WHφ(ℝn) are obtained. As applications, we establish the boundedness of Bochner–Riesz means from Hφ(ℝn) to Hφ(ℝn), or from Hφ(ℝn) to WHφ(ℝn) in the critical case. These results are new even when φ(x, t): = Φ(t) for all (x, t) ∈ ℝn × [0, ∞), where Φ is an Orlicz function.
We establish criteria for Orlicz–Besov extension/imbedding domains via (global) $n$-regular domains that generalize the known criteria for Besov extension/imbedding domains.
We establish the general form of a geometric comparison principle for n-fold convolutions of certain singular measures in ℝd which holds for arbitrary n and d. This translates into a pointwise inequality between the convolutions of projection measure on the paraboloid and a perturbation thereof, and we use it to establish a new sharp Fourier extension inequality on a general convex perturbation of a parabola. Further applications of the comparison principle to sharp Fourier restriction theory are discussed in the companion paper [3].
In this note it is shown that the class of all multipliers from the d-parameter Hardy space $H_{{\rm prod}}^1 ({\open T}^d)$ to L2 (𝕋d) is properly contained in the class of all multipliers from L logd/2L (𝕋d) to L2(𝕋d).
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$, where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$. We also establish Sobolev type inequality for Riesz potentials on the unit ball.
Let $T_{1}$, $T_{2}$ be two Calderón–Zygmund operators and $T_{1,b}$ be the commutator of $T_{1}$ with symbol $b\in \text{BMO}(\mathbb{R}^{n})$. In this paper, by establishing new bilinear sparse dominations and a new weighted estimate for bilinear sparse operators, we prove that the composite operator $T_{1}T_{2}$ satisfies the following estimate: for $\unicode[STIX]{x1D706}>0$ and weight $w\in A_{1}(\mathbb{R}^{n})$,
We study the connection between the Muckenhoupt Ap weights and bounded mean oscillation (BMO) for general bases for ℝd. New classes of bases are introduced that allow for several deep results on the Muckenhoupt weights–BMO connection to hold in a very general form. The John–Nirenberg type inequality and its consequences are valid for the new class of Calderón–Zygmund bases which includes cubes in ℝd, but also the basis of rectangles in ℝd. Of particular interest to us is the Garnett–Jones theorem on the BMO distance, which is valid for cubes. We prove that the theorem is equivalent to the newly introduced A2-decomposition property of bases. Several sufficient conditions for the theorem to hold are analysed as well. However, the question whether the theorem fully holds for rectangles remains open.
In this paper, we prove some reverse discrete inequalities with weights of Muckenhoupt and Gehring types and use them to prove some higher summability theorems on a higher weighted space $l_{w}^{p}({\open N})$ form summability on the weighted space $l_{w}^{q}({\open N})$ when p>q. The proofs are obtained by employing new discrete weighted Hardy's type inequalities and their converses for non-increasing sequences, which, for completeness, we prove in our special setting. To the best of the authors' knowledge, these higher summability results have not been considered before. Some numerical results will be given for illustration.
For a complex function $F$ on $\mathbb{C}$, we study the associated composition operator $T_{F}(f):=F\circ f=F(f)$ on Wiener amalgam $W^{p,q}(\mathbb{R}^{d})\;(1\leqslant p<\infty ,1\leqslant q<2)$. We have shown $T_{F}$ maps $W^{p,1}(\mathbb{R}^{d})$ to $W^{p,q}(\mathbb{R}^{d})$ if and only if $F$ is real analytic on $\mathbb{R}^{2}$ and $F(0)=0$. Similar result is proved in the case of modulation spaces $M^{p,q}(\mathbb{R}^{d})$. In particular, this gives an affirmative answer to the open question proposed in Bhimani and Ratnakumar (J. Funct. Anal. 270(2) (2016), 621–648).
Let $0<\unicode[STIX]{x1D6FC}<n,1\leq p<q<\infty$ with $1/p-1/q=\unicode[STIX]{x1D6FC}/n$, $\unicode[STIX]{x1D714}\in A_{p,q}$, $\unicode[STIX]{x1D708}\in A_{\infty }$ and let $f$ be a locally integrable function. In this paper, it is proved that $f$ is in bounded mean oscillation $\mathit{BMO}$ space if and only if
where $\unicode[STIX]{x1D714}^{p}(B)=\int _{B}\unicode[STIX]{x1D714}(x)^{p}\,dx$ and $f_{\unicode[STIX]{x1D708},B}=(1/\unicode[STIX]{x1D708}(B))\int _{B}f(y)\unicode[STIX]{x1D708}(y)\,dy$. We also show that $f$ belongs to Lipschitz space $Lip_{\unicode[STIX]{x1D6FC}}$ if and only if
is bounded on the Hardy spaces of the upper half-plane ${\rm {\cal H}}_a^p ({\open C}_ + )$, $p\in [1,\infty ]$. The corresponding operator norms and their applications are also given.
We exhibit the first explicit examples of Salem sets in ℚp of every dimension 0 < α < 1 by showing that certain sets of well-approximable p-adic numbers are Salem sets. We construct measures supported on these sets that satisfy essentially optimal Fourier decay and upper regularity conditions, and we observe that these conditions imply that the measures satisfy strong Fourier restriction inequalities. We also partially generalize our results to higher dimensions. Our results extend theorems of Kaufman, Papadimitropoulos, and Hambrook from the real to the p-adic setting.
In this paper, we obtain the variational characterization of Hardy space Hp for $p\in (((n)/({n+1})),1]$, and get estimates for the oscillation operator and the λ-jump operator associated with approximate identities acting on Hp for $p\in (((n)/({n+1})),1]$. Moreover, we give counterexamples to show that the oscillation and λ-jump associated with some approximate identity cannot be used to characterize Hp for $p\in (((n)/({n+1})),1]$.
We prove that if p > 1, $w\in A_p^ +$, b ∈ CMO and $C_b^ + $ is the commutator with symbol b of a Calderón–Zygmund convolution singular integral with kernel supported on (−∞, 0), then $C_b^ + $ is compact from Lp(w) into itself.