To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tachikawa's second conjecture for symmetric algebras is shown to be equivalent to indecomposable symmetric algebras not having any nontrivial stratifying ideals. The conjecture is also shown to be equivalent to the supremum of stratified ratios being less than $1$, when taken over all indecomposable symmetric algebras. An explicit construction provides a series of counterexamples to Tachikawa's second conjecture from each (potentially existing) gendo-symmetric algebra that is a counterexample to Nakayama's conjecture. The results are based on establishing recollements of derived categories and on constructing new series of algebras.
Several authors have studied homomorphisms from first homology groups of modular curves to $K_2(X)$, with $X$ either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a $1$-cocycle from $\mathrm {GL}_2(\mathbb {Z})$ to the second $K$-group of the function field of a suitable group scheme over $X$, from which the maps of interest arise by specialization.
Clausen a prédit que le groupe des classes d’idèles de Chevalley d’un corps de nombres F apparaît comme le premier K-groupe de la catégorie des F-espaces vectoriels localement compacts. Cela s’est avéré vrai, et se généralise même aux groupes K supérieurs dans un sens approprié. Nous remplaçons F par une $\mathbb {Q}$-algèbre semi-simple, et obtenons le groupe des classes d’idèles noncommutatif de Fröhlich de manière analogue, modulo les éléments de norme réduite une. Même dans le cas du corps de nombres, notre preuve est plus simple que celle existante, et repose sur le théorème de localisation pour des sous-catégories percolées. Enfin, en utilisant la théorie des corps de classes, nous interprétons la loi de réciprocité d’Hilbert (ainsi qu’une variante noncommutative) en termes de nos résultats.
Clausen predicted that Chevalley’s idèle class group of a number field F appears as the first K-group of the category of locally compact F-vector spaces. This has turned out to be true and even generalizes to the higher K-groups in a suitable sense. We replace F by a semisimple $\mathbb {Q}$-algebra and obtain Fröhlich’s noncommutative idèle class group in an analogous fashion, modulo the reduced norm one elements. Even in the number field case, our proof is simpler than the existing one and based on the localization theorem for percolating subcategories. Finally, using class field theory as input, we interpret Hilbert’s reciprocity law (as well as a noncommutative variant) in terms of our results.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.
We consider the equivariant Kasparov category associated to an étale groupoid, and by leveraging its triangulated structure we study its localization at the ‘weakly contractible’ objects, extending previous work by R. Meyer and R. Nest. We prove the subcategory of weakly contractible objects is complementary to the localizing subcategory of projective objects, which are defined in terms of ‘compactly induced’ algebras with respect to certain proper subgroupoids related to isotropy. The resulting ‘strong’ Baum–Connes conjecture implies the classical one, and its formulation clarifies several permanence properties and other functorial statements. We present multiple applications, including consequences for the Universal Coefficient Theorem, a generalized ‘going-down’ principle, injectivity results for groupoids that are amenable at infinity, the Baum–Connes conjecture for group bundles, and a result about the invariance of K-groups of twisted groupoid $C^*$-algebras under homotopy of twists.
We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the $\mathrm {K}(n)$- and $\mathrm {T}(n)$-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if $R$ is a ring spectrum of height $\leq n$, then its semiadditive K-theory is of height $\leq n+1$. Under further hypothesis on $R$, which are satisfied for example by the Lubin–Tate spectrum $\mathrm {E}_n$, we show that its semiadditive algebraic K-theory is of height exactly $n+1$. Finally, we connect semiadditive K-theory to $\mathrm {T}(n+1)$-localized K-theory, showing that they coincide for any $p$-invertible ring spectrum and for the completed Johnson–Wilson spectrum $\widehat {\mathrm {E}(n)}$.
Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes of points in the three-dimensional affine space and in the categorical Hall algebra of the two-dimensional affine space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological DT theory.
We first prove a categorical analogue of Davison’s support lemma, namely that complexes in the quasi-BPS categories for coprime length and weight are supported over the small diagonal in the symmetric product of the three-dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of the torus equivariant K-theory of the quasi-BPS category of coprime length and weight.
We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one-dimensional, which is a K-theoretic analogue of the computation of (numerical) BPS invariants of the three-dimensional affine space.
Structures where we have both a contravariant (pullback) and a covariant (pushforward) functoriality that satisfy base change can be encoded by functors out of ($\infty$-)categories of spans (or correspondences). In this paper, we study the more complicated setup where we have two pushforwards (an ‘additive’ and a ‘multiplicative’ one), satisfying a distributivity relation. Such structures can be described in terms of bispans (or polynomial diagrams). We show that there exist $(\infty,2)$-categories of bispans, characterized by a universal property: they corepresent functors out of $\infty$-categories of spans where the pullbacks have left adjoints and certain canonical 2-morphisms (encoding base change and distributivity) are invertible. This gives a universal way to obtain functors from bispans, which amounts to upgrading ‘monoid-like’ structures to ‘ring-like’ ones. For example, symmetric monoidal $\infty$-categories can be described as product-preserving functors from spans of finite sets, and if the tensor product is compatible with finite coproducts our universal property gives the canonical semiring structure using the coproduct and tensor product. More interestingly, we encode the additive and multiplicative transfers on equivariant spectra as a functor from bispans in finite $G$-sets, extend the norms for finite étale maps in motivic spectra to a functor from certain bispans in schemes, and make $\mathrm {Perf}(X)$ for $X$ a spectral Deligne–Mumford stack a functor of bispans using a multiplicative pushforward for finite étale maps in addition to the usual pullback and pushforward maps. Combining this with the polynomial functoriality of $K$-theory constructed by Barwick, Glasman, Mathew, and Nikolaus, we obtain norms on algebraic $K$-theory spectra.
Given a resolution of rational singularities $\pi \colon {\tilde {X}} \to X$ over a field of characteristic zero, we use a Hodge-theoretic argument to prove that the image of the functor ${\mathbf {R}}\pi _*\colon {\mathbf {D}}^{\mathrm {b}}({\tilde {X}}) \to {\mathbf {D}}^{\mathrm {b}}(X)$ between bounded derived categories of coherent sheaves generates ${\mathbf {D}}^{\mathrm {b}}(X)$ as a triangulated category. This gives a weak version of the Bondal–Orlov localization conjecture [BO02], answering a question from [PS21]. The same result is established more generally for proper (not necessarily birational) morphisms $\pi \colon {\tilde {X}} \to X$, with ${\tilde {X}}$ smooth, satisfying ${\mathbf {R}}\pi _*({\mathcal {O}}_{\tilde {X}}) = {\mathcal {O}}_X$.
We provide a fairly self-contained account of the localisation and cofinality theorems for the algebraic $\operatorname K$-theory of stable $\infty$-categories. It is based on a general formula for the evaluation of an additive functor on a Verdier quotient closely following work of Waldhausen. We also include a new proof of the additivity theorem of $\operatorname K$-theory, strongly inspired by Ranicki's algebraic Thom construction, a short proof of the universality theorem of Blumberg, Gepner and Tabuada, and a second proof of the cofinality theorem which is based on the universal property of $\operatorname K$-theory.
We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of$\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.
We prove that real topological Hochschild homology $\mathrm {THR}$ for schemes with involution satisfies base change and descent for the ${\mathbb {Z}/2}$-isovariant étale topology. As an application, we provide computations for the projective line (with and without involution) and the higher-dimensional projective spaces.
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.
Loday’sassembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.
We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.
We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector bundles. It follows that the $K$-theory of finite rank vector bundles on such orbispaces is a cohomology theory. Global presentation results for smooth orbifolds and derived smooth orbifolds also follow.
In this paper we compute the topological Hochschild homology of quotients of discrete valuation rings (DVRs). Along the way we give a short argument for Bökstedt periodicity and generalizations over various other bases. Our strategy also gives a very efficient way to redo the computations of $\operatorname {THH}$ (respectively, logarithmic $\operatorname {THH}$) of complete DVRs originally due to Lindenstrauss and Madsen (respectively, Hesselholt and Madsen).
Let $X/{\mathbb C}$ be a smooth projective variety. We consider two integral invariants, one of which is the level of the Hodge cohomology algebra $H^*(X,{\mathbb C})$ and the other involving the complexity of the higher Chow groups ${\mathrm {CH}}^*(X,m;{\mathbb Q})$ for $m\geq 0$. We conjecture that these two invariants are the same and accordingly provide some strong evidence in support of this.