To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide an equivariant extension of the bivariant Cuntz semigroup introduced in previous work for the case of compact group actions over C*-algebras. Its functoriality properties are explored, and some well-known classification results are retrieved. Connections with crossed products are investigated, and a concrete presentation of equivariant Cuntz homology is provided. The theory that is here developed can be used to define the equivariant Cuntz semigroup. We show that the object thus obtained coincides with the one recently proposed by Gardella [‘Regularity properties and Rokhlin dimension for compact group actions’, Houston J. Math.43(3) (2017), 861–889], and we complement their work by providing an open projection picture of it.
We use a spectral sequence developed by Graeme Segal in order to understand the twisted G-equivariant K-theory for proper and discrete actions. We show that the second page of this spectral sequence is isomorphic to a version of Bredon cohomology with local coefficients in twisted representations. We furthermore explain some phenomena concerning the third differential of the spectral sequence, and recover known results when the twisting comes from finite order elements in discrete torsion.
We develop a theory of $R$-module Thom spectra for a commutative symmetric ring spectrum $R$ and we analyze their multiplicative properties. As an interesting source of examples, we show that $R$-algebra Thom spectra associated to the special unitary groups can be described in terms of quotient constructions on $R$. We apply the general theory to obtain a description of the $R$-based topological Hochschild homology associated to an $R$-algebra Thom spectrum.
Given a smooth variety $X$ and an effective Cartier divisor $D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of $X$ along $D$ has a canonical decomposition in terms of the Chow group of 0-cycles $\text{CH}_{0}(X)$ and the Chow group of 0-cycles with modulus $\text{CH}_{0}(X|D)$ on $X$. When $X$ is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of $\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that $\text{CH}_{0}(X|D)$ is torsion-free and there is an injective cycle class map $\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$ if $X$ is affine. For a smooth affine surface $X$, this is strengthened to show that $K_{0}(X,D)$ is an extension of $\text{CH}_{1}(X|D)$ by $\text{CH}_{0}(X|D)$.
We show that for any commutative Noetherian regular ring $R$ containing $\mathbb{Q}$, the map $K_{1}(R)\rightarrow K_{1}\left(\frac{R[x_{1},\ldots ,x_{4}]}{(x_{1}x_{2}-x_{3}x_{4})}\right)$ is an isomorphism. This answers a question of Gubeladze. We also compute the higher $K$-theory of this monoid algebra. In particular, we show that the above isomorphism does not extend to all higher $K$-groups. We give applications to a question of Lindel on the Serre dimension of monoid algebras.
Making use of Gruson–Raynaud’s technique of ‘platification par éclatement’, Kerz and Strunk proved that the negative homotopy $K$-theory groups of a Noetherian scheme $X$ of Krull dimension $d$ vanish below $-d$. In this article, making use of noncommutative algebraic geometry, we improve this result in the case of quotient singularities by proving that the negative homotopy $K$-theory groups vanish below $-1$. Furthermore, in the case of cyclic quotient singularities, we provide an explicit ‘upper bound’ for the first negative homotopy $K$-theory group.
We compute the regulator of the Beilinson–Deninger–Scholl elements in terms of special values of $L$-functions of modular forms. The main tool is the Rogers–Zudilin method.
We establish a connection between motivic cohomology classes over the Siegel threefold and non-critical special values of the degree-four $L$-function of some cuspidal automorphic representations of $\text{GSp}(4)$. Our computation relies on our previous work [On higher regulators of Siegel threefolds I: the vanishing on the boundary, Asian J. Math. 19 (2015), 83–120] and on an integral representation of the $L$-function due to Piatetski-Shapiro.
Let $M$ be an $n$-dimensional closed oriented smooth manifold with $n\equiv 4\;\text{mod}\;8$, and $\unicode[STIX]{x1D702}$ be a complex vector bundle over $M$. We determine the final obstruction for $\unicode[STIX]{x1D702}$ to admit a stable real form in terms of the characteristic classes of $M$ and $\unicode[STIX]{x1D702}$. As an application, we obtain the criteria to determine which complex vector bundles over a simply connected four-dimensional manifold admit a stable real form.
We introduce coarse flow spaces for relatively hyperbolic groups and use them to verify a regularity condition for the action of relatively hyperbolic groups on their boundaries. As an application the Farrell–Jones conjecture for relatively hyperbolic groups can be reduced to the peripheral subgroups (up to index-2 overgroups in the $L$-theory case).
We study the extent to which the weak Euclidean and stably free cancellation properties hold for rings of Laurent polynomials with coefficients in an Artinian ring A.
Let $p,q$ be primes such that $q|p-1$ and set $\unicode[STIX]{x1D6F7}=C_{p}\rtimes C_{q}$, $G=\unicode[STIX]{x1D6F7}\times C_{\infty }^{n}$ and $\unicode[STIX]{x1D6EC}=\mathbf{Z}[G]$, the integral group ring of $G$. By means of a fibre square decomposition, we show that stably free modules over $\unicode[STIX]{x1D6EC}$ are necessarily free.
We introduce techniques of Suslin, Voevodsky, and others into the study of singular varieties. Our approach is modeled after Goresky–MacPherson intersection homology. We provide a formulation of perversity cycle spaces leading to perversity homology theory and a companion perversity cohomology theory based on generalized cocycle spaces. These theories lead to conditions on pairs of cycles which can be intersected and a suitable equivalence relation on cocycles/cycles enabling pairings on equivalence classes. We establish suspension and splitting theorems, as well as a localization property. Some examples of intersections on singular varieties are computed.
We start developing a notion of reciprocity sheaves, generalizing Voevodsky’s homotopy invariant presheaves with transfers which were used in the construction of his triangulated categories of motives. We hope that reciprocity sheaves will eventually lead to the definition of larger triangulated categories of motivic nature, encompassing non-homotopy invariant phenomena.
For a prime number $p$, we show that differentials $d_{n}$ in the motivic cohomology spectral sequence with $p$-local coefficients vanish unless $p-1$ divides $n-1$. We obtain an explicit formula for the first non-trivial differential $d_{p}$, expressing it in terms of motivic Steenrod $p$-power operations and Bockstein maps. To this end, we compute the algebra of operations of weight $p-1$ with $p$-local coefficients. Finally, we construct examples of varieties having non-trivial differentials $d_{p}$ in their motivic cohomology spectral sequences.
We describe how Mirković–Vilonen (MV) polytopes arise naturally from the categorification of Lie algebras using Khovanov–Lauda–Rouquier (KLR) algebras. This gives an explicit description of the unique crystal isomorphism between simple representations of KLR algebras and MV polytopes. MV polytopes, as defined from the geometry of the affine Grassmannian, only make sense in finite type. Our construction on the other hand gives a map from the infinity crystal to polytopes for all symmetrizable Kac–Moody algebras. However, to make the map injective and have well-defined crystal operators on the image, we must in general decorate the polytopes with some extra information. We suggest that the resulting ‘KLR polytopes’ are the general-type analogues of MV polytopes. We give a combinatorial description of the resulting decorated polytopes in all affine cases, and show that this recovers the affine MV polytopes recently defined by Baumann, Kamnitzer, and the first author in symmetric affine types. We also briefly discuss the situation beyond affine type.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
We prove that either the images of the mappingclass groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann.294 (1992), 235–265) and of Gambaudo and Ghys (Bull. Soc. Math. France133(4) (2005), 541–579). These quasi-homomorphisms are pull-backs of the Dupont–Guichardet–Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.