We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups G for which the integral group ring ℤG has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condition for SFC and use this to show that ℤG has SFC provided at most one copy of the quaternions ℍ occurs in the Wedderburn decomposition of the real group ring ℝG. This generalises the Eichler condition in the case of integral group rings.
For a prime p and a field k of characteristic
$p,$
we define Steenrod operations
$P^{n}_{k}$
on motivic cohomology with
$\mathbb {F}_{p}$
-coefficients of smooth varieties defined over the base field
$k.$
We show that
$P^{n}_{k}$
is the pth power on
$H^{2n,n}(-,\mathbb {F}_{p}) \cong CH^{n}(-)/p$
and prove an instability result for the operations. Restricted to mod p Chow groups, we show that the operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost’s degree formula. Over a base field of characteristic
$2,$
we obtain new results on quadratic forms.
We study relationships between the Nisnevich topology on smooth schemes and certain Grothendieck topologies on proper and not necessarily proper modulus pairs, which were introduced in previous papers. Our results play an important role in the theory of sheaves with transfers on proper modulus pairs.
We observe an inductive structure in a large class of Artin groups of finite real, complex and affine types and exploit this information to deduce the Farrell–Jones isomorphism conjecture for these groups.
We prove that Cuntz semigroups of C*-algebras satisfy Edwards' condition with respect to every quasitrace. This condition is a key ingredient in the study of the realization problem of functions on the cone of quasitraces as ranks of positive elements. In the course of our investigation, we identify additional structure of the Cuntz semigroup of an arbitrary C*-algebra and of the cone of quasitraces.
An element a in a ring R is left annihilator-stable (or left AS) if, whenever
$Ra+{\rm l}(b)=R$
with
$b\in R$
,
$a-u\in {\rm l}(b)$
for a unit u in R, and the ring R is a left AS ring if each of its elements is left AS. In this paper, we show that the left AS elements in a ring form a multiplicatively closed set, giving an affirmative answer to a question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.]. This result is used to obtain a necessary and sufficient condition for a formal triangular matrix ring to be left AS. As an application, we provide examples of left AS rings R over which the triangular matrix rings
${\mathbb T}_n(R)$
are not left AS for all
$n\ge 2$
. These examples give a negative answer to another question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.] whether R/J(R) being left AS implies that R is left AS.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $\mathbf{SL}_{n}(\mathbb{Z})$. This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $\mathbf{SL}_{n}(K)$ for $K$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $\mathbf{SL}_{n}(\mathbb{Z})$.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
For a split reductive group $G$ over a finite field, we show that the intersection (cohomology) motive of the moduli stack of iterated $G$-shtukas with bounded modification and level structure is defined independently of the standard conjectures on motivic $t$-structures on triangulated categories of motives. This is in accordance with general expectations on the independence of $\ell$ in the Langlands correspondence for function fields.
Purely algebraic objects like abstract groups, coset spaces, and G-modules do not have a notion of hole as do analytical and topological objects. However, equipping an algebraic object with a global action reveals holes in it and thanks to the homotopy theory of global actions, the holes can be described and quantified much as they are in the homotopy theory of topological spaces. Part I of this article, due to the first author, starts by recalling the notion of a global action and describes in detail the global actions attached to the general linear, elementary, and Steinberg groups. With these examples in mind, we describe the elementary homotopy theory of arbitrary global actions, construct their homotopy groups, and revisit their covering theory. We then equip the set $Um_{n}(R)$ of all unimodular row vectors of length $n$ over a ring $R$ with a global action. Its homotopy groups $\unicode[STIX]{x1D70B}_{i}(Um_{n}(R)),i\geqslant 0$ are christened the vector $K$-theory groups $K_{i+1}(Um_{n}(R)),i\geqslant 0$ of $Um_{n}(R)$. It is known that the homotopy groups $\unicode[STIX]{x1D70B}_{i}(\text{GL}_{n}(R))$ of the general linear group $\text{GL}_{n}(R)$ viewed as a global action are the Volodin $K$-theory groups $K_{i+1,n}(R)$. The main result of Part I is an algebraic construction of the simply connected covering map $\mathit{StUm}_{n}(R)\rightarrow \mathit{EUm}_{n}(R)$ where $\mathit{EUm}_{n}(R)$ is the path connected component of the vector $(1,0,\ldots ,0)\in Um_{n}(R)$. The result constructs the map as a specific quotient of the simply connected covering map $St_{n}(R)\rightarrow E_{n}(R)$ of the elementary global action $E_{n}(R)$ by the Steinberg global action $St_{n}(R)$. As expected, $K_{2}(Um_{n}(R))$ is identified with $\text{Ker}(\mathit{StUm}_{n}(R)\rightarrow \mathit{EUm}_{n}(R))$. Part II of the paper provides an exact sequence relating stability for the Volodin $K$-theory groups $K_{1,n}(R)$ and $K_{2,n}(R)$ to vector $K$-theory groups.
We construct, for any set of primes $S$, a triangulated category (in fact a stable $\infty$-category) whose Grothendieck group is $S^{-1}\mathbf{Z}$. More generally, for any exact $\infty$-category $E$, we construct an exact $\infty$-category $S^{-1}E$ of equivariant sheaves on the Cantor space with respect to an action of a dense subgroup of the circle. We show that this $\infty$-category is precisely the result of categorifying division by the primes in $S$. In particular, $K_{n}(S^{-1}E)\cong S^{-1}K_{n}(E)$.
In this paper we prove the Rigidity Theorem for motives of rigid analytic varieties over a non-Archimedean valued field $K$. We prove this theorem both for motives with transfers and without transfers in a relative setting. Applications include the construction of étale realization functors, an upgrade of the known comparison between motives with and without transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to $\mathbb{Z}[1/p]$-coefficients.
We study Tate motives with integral coefficients through the lens of tensor triangular geometry. For some base fields, including $\overline{\mathbb{Q}}$ and $\overline{\mathbb{F}_{p}}$, we arrive at a complete description of the tensor triangular spectrum and a classification of the thick tensor ideals.
A category structure for ordered Bratteli diagrams is proposed in which isomorphism coincides with the notion of equivalence of Herman, Putnam, and Skau. It is shown that the natural one-to-one correspondence between the category of Cantor minimal systems and the category of simple properly ordered Bratteli diagrams is in fact an equivalence of categories. This gives a Bratteli–Vershik model for factor maps between Cantor minimal systems. We give a construction of factor maps between Cantor minimal systems in terms of suitable maps (called premorphisms) between the corresponding ordered Bratteli diagrams, and we show that every factor map between two Cantor minimal systems is obtained in this way. Moreover, solving a natural question, we are able to characterize Glasner and Weiss’s notion of weak orbit equivalence of Cantor minimal systems in terms of the corresponding C*-algebra crossed products.
We prove a $\unicode[STIX]{x1D6E4}$-equivariant version of the algebraic index theorem, where $\unicode[STIX]{x1D6E4}$ is a discrete group of automorphisms of a formal deformation of a symplectic manifold. The particular cases of this result are the algebraic version of the transversal index theorem related to the theorem of A. Connes and H. Moscovici for hypo-elliptic operators and the index theorem for the extension of the algebra of pseudodifferential operators by a group of diffeomorphisms of the underlying manifold due to A. Savin, B. Sternin, E. Schrohe and D. Perrot.
We prove the analog for the $K$-theory of forms of the $Q=+$ theorem in algebraic $K$-theory. That is, we show that the $K$-theory of forms defined in terms of an $S_{\bullet }$-construction is a group completion of the category of quadratic spaces for form categories in which all admissible exact sequences split. This applies for instance to quadratic and hermitian forms defined with respect to a form parameter.
We extend two known existence results to simply connected manifolds with positive sectional curvature: we show that there exist pairs of simply connected positively-curved manifolds that are tangentially homotopy equivalent but not homeomorphic, and we deduce that an open manifold may admit a pair of non-homeomorphic simply connected and positively-curved souls. Examples of such pairs are given by explicit pairs of Eschenburg spaces. To deduce the second statement from the first, we extend our earlier work on the stable converse soul question and show that it has a positive answer for a class of spaces that includes all Eschenburg spaces.
We study the equivariant oriented cohomology ring $\mathtt{h}_{T}(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott–Samelson classes in $\mathtt{h}_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results of Chow groups by Brion, Knutson, Peterson, Tymoczko and others. Our main result concerns the equivariant oriented cohomology theory $\mathfrak{h}$ corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhar’s parabolic Kazhdan–Lusztig basis, i.e., we realize it as some cohomology classes (the parabolic Kazhdan–Lusztig (KL) Schubert classes) in $\mathfrak{h}_{T}(G/P)$. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We also prove the latter in several special cases.