We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define a theory of étale motives over a noetherian scheme. This provides a system of categories of complexes of motivic sheaves with integral coefficients which is closed under the six operations of Grothendieck. The rational part of these categories coincides with the triangulated categories of Beilinson motives (and is thus strongly related to algebraic $K$-theory). We extend the rigidity theorem of Suslin and Voevodsky over a general base scheme. This can be reformulated by saying that torsion étale motives essentially coincide with the usual complexes of torsion étale sheaves (at least if we restrict ourselves to torsion prime to the residue characteristics). As a consequence, we obtain the expected results of absolute purity, of finiteness, and of Grothendieck duality for étale motives with integral coefficients, by putting together their counterparts for Beilinson motives and for torsion étale sheaves. Following Thomason’s insights, this also provides a conceptual and convenient construction of the $\ell$-adic realization of motives, as the homotopy $\ell$-completion functor.
The purpose of this work is to give a definition of a topological K-theory for dg-categories over $\mathbb{C}$ and to prove that the Chern character map from algebraic K-theory to periodic cyclic homology descends naturally to this new invariant. This topological Chern map provides a natural candidate for the existence of a rational structure on the periodic cyclic homology of a smooth proper dg-algebra, within the theory of noncommutative Hodge structures. The definition of topological K-theory consists in two steps: taking the topological realization of algebraic K-theory and inverting the Bott element. The topological realization is the left Kan extension of the functor ‘space of complex points’ to all simplicial presheaves over complex algebraic varieties. Our first main result states that the topological K-theory of the unit dg-category is the spectrum $\mathbf{BU}$. For this we are led to prove a homotopical generalization of Deligne’s cohomological proper descent, using Lurie’s proper descent. The fact that the Chern character descends to topological K-theory is established by using Kassel’s Künneth formula for periodic cyclic homology and the proper descent. In the case of a dg-category of perfect complexes on a separated scheme of finite type, we show that we recover the usual topological K-theory of complex points. We show as well that the Chern map tensorized with $\mathbb{C}$ is an equivalence in the case of a finite-dimensional associative algebra – providing a formula for the periodic homology groups in terms of the stack of finite-dimensional modules.
The new homotopy theory of exact$\infty$-categories is introduced and employed to prove a Theorem of the Heart for algebraic $K$-theory (in the sense of Waldhausen). This implies a new compatibility between Waldhausen $K$-theory and Neeman $K$-theory. Additionally, it provides a new proof of the Dévissage and Localization theorems of Blumberg–Mandell, new models for the $G$-theory of schemes, and a proof of the invariance of $G$-theory under derived nil-thickenings.
We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral: one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard–Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of $K3$ surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the $K3$ family. We prove a conjecture by David Broadhurst which states that at a special kinematical point the Feynman integral is given by a critical value of the Hasse–Weil $L$-function of the $K3$ surface. This result is shown to be a particular case of Deligne’s conjectures relating values of $L$-functions inside the critical strip to periods.
The K-theoretical aspect of the commutative Bezout rings is established using the arithmetical properties of the Bezout rings in order to obtain a ring of all Smith normal forms of matrices over the Bezout ring. The internal structure and basic properties of such rings are discussed as well as their presentations by the Witt vectors. In a case of a commutative von Neumann regular rings the famous Grothendieck group K0(R) obtains the alternative description.
We show that the $\mathbb{Z}$/2-equivariant nth integral Morava K-theory with reality is self-dual with respect to equivariant Anderson duality. In particular, there is a universal coefficients exact sequence in integral Morava K-theory with reality, and we recover the self-duality of the spectrum KO as a corollary. The study of $\mathbb{Z}$/2-equivariant Anderson duality made in this paper gives a nice interpretation of some symmetries of RO($\mathbb{Z}$/2)-graded (i.e. bigraded) equivariant cohomology groups in terms of Mackey functor duality.
Let be a field and let Q be a minimal Hopf quiver, i.e. a cyclic quiver or the infinite linear quiver, and let repln(Q) denote the category of locally nilpotent finite-dimensional -representations of Q. The category repln(Q) has natural tensor structures induced from graded Hopf structures on the path coalgebra . Tensor categories of the form repln(Q) are an interesting class of tame hereditary pointed tensor categories that are not finite. The aim of this paper is to compute the Clebsch–Gordan formulae and Green rings of such tensor categories.
Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$. The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$. We prove the non-triviality of the $p$-adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$. The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$-anticyclotomic extension of $K$.
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial $G$-sets to symmetric $G$-spectra, where $G$ is a finite group. We extend a notion of $G$-linearity suggested by Blumberg to define stably excisive and ${\it\rho}$-analytic homotopy functors, as well as a $G$-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected $G$-maps to $G$-equivalences. It is analogous to the classical result of Goodwillie that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt and Madsen’s Real algebraic $K$-theory of a split square zero extension of Wall antistructures defines an analytic functor in the $\mathbb{Z}/2$-equivariant setting. We further show that the equivariant derivative of this Real $K$-theory functor is $\mathbb{Z}/2$-equivalent to Real MacLane homology.
We show that the cyclic and epicyclic categories which play a key role in the encoding of cyclic homology and the lambda operations, are obtained from projective geometry in characteristic one over the infinite semifield of max-plus integers ℤmax. Finite-dimensional vector spaces are replaced by modules defined by restriction of scalars from the one-dimensional free module, using the Frobenius endomorphisms of ℤmax. The associated projective spaces are finite and provide a mathematically consistent interpretation of Tits's original idea of a geometry over the absolute point. The self-duality of the cyclic category and the cyclic descent number of permutations both acquire a geometric meaning.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
We prove that every incidence graph of a finite projective plane allows a partitioning into incident point-line pairs. This is used to determine the order of the identity in the K0-group of so-called polygonal algebras associated with cocompact group actions on Ã2-buildings with three orbits. These C*-algebras are classified by the K0-group and the class of the identity in K0. To be more precise, we show that 2(q − 1) = 0, where q is the order of the links of the building. Furthermore, if q = 22l−1 with l ∈ ℤ, then the order of is q − 1.
The goal of this paper is to prove that if certain ‘standard’ conjectures on motives over algebraically closed fields hold, then over any ‘reasonable’ scheme $S$ there exists a motivic$t$-structure for the category $\text{DM}_{c}(S)$ of relative Voevodsky’s motives (to be more precise, for the Beilinson motives described by Cisinski and Deglise). If $S$ is of finite type over a field, then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semisimple factors. We also prove a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and characterize semisimple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $\text{DM}_{c}(S)$ (that was introduced previously by Hébert and the author). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement also yields the existence of the Chow weight filtration for such (co)homology that is strictly restricted by (‘motivic’) morphisms.
In this paper we give explicit formulas for differential characteristic classes of principal $G$-bundles with connections and prove their expected properties. In particular, we obtain explicit formulas for differential Chern classes, differential Pontryagin classes and the differential Euler class. Furthermore, we show that the differential Chern class is the unique natural transformation from (Simons–Sullivan) differential $K$-theory to (Cheeger–Simons) differential characters that is compatible with curvature and characteristic class. We also give the explicit formula for the differential Chern class on Freed–Lott differential $K$-theory. Finally, we discuss the odd differential Chern classes.
In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of $K$-theory with compact support.
We consider étale motivic or Lichtenbaum cohomology and its relation to algebraic cycles. We give an geometric interpretation of Lichtenbaum cohomology and use it to show that the usual integral cycle maps extend to maps on integral Lichtenbaum cohomology. We also show that Lichtenbaum cohomology, in contrast to the usual motivic cohomology, compares well with integral cohomology theories. For example, we formulate integral étale versions of the Hodge and the Tate conjecture, and show that these are equivalent to the usual rational conjectures.
A special linear Grassmann variety $\text{SGr}(k,n)$ is the complement to the zero section of the determinant of the tautological vector bundle over $\text{Gr}(k,n)$. For an $SL$-oriented representable ring cohomology theory $A^{\ast }(-)$ with invertible stable Hopf map ${\it\eta}$, including Witt groups and $\text{MSL}_{{\it\eta}}^{\ast ,\ast }$, we have $A^{\ast }(\text{SGr}(2,2n+1))\cong A^{\ast }(pt)[e]/(e^{2n})$, and $A^{\ast }(\text{SGr}(k,n))$ is a truncated polynomial algebra over $A^{\ast }(pt)$ whenever $k(n-k)$ is even. A splitting principle for such theories is established. Using the computations for the special linear Grassmann varieties, we obtain a description of $A^{\ast }(\text{BSL}_{n})$ in terms of homogeneous power series in certain characteristic classes of tautological bundles.
For the $(d+1)$-dimensional Lie group $G=\mathbb{Z}_{p}^{\times }\ltimes \mathbb{Z}_{p}^{\oplus d}$, we determine through the use of $p$-power congruences a necessary and sufficient set of conditions whereby a collection of abelian $L$-functions arises from an element in $K_{1}(\mathbb{Z}_{p}\unicode[STIX]{x27E6}G\unicode[STIX]{x27E7})$. If $E$ is a semistable elliptic curve over $\mathbb{Q}$, these abelian $L$-functions already exist; therefore, one can obtain many new families of higher order $p$-adic congruences. The first layer congruences are then verified computationally in a variety of cases.