To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spot prices in energy markets exhibit special features, such as price spikes, mean reversion, stochastic volatility, inverse leverage effect, and dependencies between the commodities. In this paper a multivariate stochastic volatility model is introduced which captures these features. The second-order structure and stationarity of the model are analyzed in detail. A simulation method for Monte Carlo generation of price paths is introduced and a numerical example is presented.
In Benth and Vos (2013) we introduced a multivariate spot price model with stochastic volatility for energy markets which captures characteristic features, such as price spikes, mean reversion, stochastic volatility, and inverse leverage effect as well as dependencies between commodities. In this paper we derive the forward price dynamics based on our multivariate spot price model, providing a very flexible structure for the forward curves, including contango, backwardation, and hump shape. Moreover, a Fourier transform-based method to price options on the forward is described.
We give an affirmative answer to one of the questions posed by Bourin regarding a special type of inequality referred to as subadditivity inequalities in the case of the Hilbert–Schmidt and the trace norms. We formulate the solution for arbitrary commuting positive operators, and we conjecture that it is true for all unitarily invariant norms and all commuting positive operators. New related trace inequalities are also presented.
We prove an upper bound on sums of squares of minors of $\{+1, -1\}$-matrices. The bound is sharp for Hadamard matrices, a result due to de Launey and Levin [‘$(1,-1)$-matrices with near-extremal properties’, SIAM J. Discrete Math.23(2009), 1422–1440], but our proof is simpler. We give several corollaries relevant to minors of Hadamard matrices.
We prove analogues of several well-known results concerning rational maps between quadrics for the class of so-called quasilinear p-hypersurfaces. These hypersurfaces are nowhere smooth over the base field, so many of the geometric methods which have been successfully applied to the study of projective homogeneous varieties over fields cannot be used. We are therefore forced to take an alternative approach, which is partly facilitated by the appearance of several non-traditional features in the study of these objects from an algebraic perspective. Our main results were previously known for the class of quasilinear quadrics. We provide new proofs here, because the original proofs do not immediately generalise for quasilinear hypersurfaces of higher degree.
A matrix is a Euclidean distance matrix (EDM) if there exist points such that the matrix elements are squares of distances between the corresponding points. The inverse eigenvalue problem (IEP) is as follows: construct (or prove the existence of) a matrix with particular properties and a given spectrum. It is well known that the IEP for EDMs of size 3 has a solution. In this paper all solutions of the problem are given and their relation with geometry is studied. A possible extension to larger EDMs is tackled.
Trace inequalities for sums and products of matrices are presented. Relations between the given inequalities and earlier results are discussed. Among other inequalities, it is shown that if A and B are positive semidefinite matrices then for any positive integer k.
The first and second representation theorems for sign-indefinite, not necessarily semi-bounded quadratic forms are revisited. New and straightforward proofs of these theorems are given. A number of necessary and sufficient conditions for the second representation theorem to hold are obtained. A new simple and explicit example of a self-adjoint operator for which the second representation theorem fails to hold is also provided.
Continuous-time discrete-state random Markov chains generated by a random linear differential equation with a random tridiagonal matrix are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses comparison theorems for Carathéodory random differential equations and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself with respect to the Hilbert projective metric. It does not involve probabilistic properties of the sample path and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transition probabilities, in which case the attractor is a periodic path.
We investigate the number of symmetric matrices of nonnegative integers with zero diagonal such that each row sum is the same. Equivalently, these are zero-diagonal symmetric contingency tables with uniform margins, or loop-free regular multigraphs. We determine the asymptotic value of this number as the size of the matrix tends to infinity, provided the row sum is large enough. We conjecture that one form of our answer is valid for all row sums. An example appears in Figure 1.
We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×n matrices with entries that are polynomials or more general analytic functions.
A matrix A over a field F is said to be an AJT matrix if there exists a vector x over F such that both x and Ax have no zero component. The Alon–Jaeger–Tarsi (AJT) conjecture states that if F is a finite field, with |F|≥4, and A is an element of GL n (F) , then A is an AJT matrix. In this paper we prove that every nonzero matrix over a field F, with |F|≥3 , is similar to an AJT matrix. Let AJTn (q)denote the set of n×n, invertible, AJT matrices over a field with q elements. It is shown that the following are equivalent for q≥3 : (i) AJTn (q)=GL n (q) ; (ii) every 2n×n matrix of the form (A∣B)t has a nowhere-zero vector in its image, where A,B are n×n, invertible, upper and lower triangular matrices, respectively; and (iii) AJTn (q)forms a semigroup.
This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.
It is shown that if all powers of a ring element a are regular, then a is strongly pi-regular exactly when a suitable word in the powers of a and their inner inverses is a unit.
We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of 1−ba in terms of generalized inverses of 1−ab. In our development we prove that the Drazin index of 1−ba is equal to the Drazin index of 1−ab.
Let $A$ and $B$ be $n\,\times \,n$ complex Hermitian (or real symmetric) matrices with eigenvalues ${{a}_{1}}\,\ge \,\cdots \,\ge \,{{a}_{n}}$ and ${{b}_{1}}\,\ge \,\cdots \,\ge \,{{b}_{n}}$. All possible inertia values, ranks, and multiple eigenvalues of $A\,+\,B$ are determined. Extension of the results to the sum of $k$ matrices with $k\,>\,2$ and connections of the results to other subjects such as algebraic combinatorics are also discussed.
The length of every pair {A,B} of 6×6 complex matrices is shown to be at most 10, that is, the words in A,B of length at most 10, including the empty word, span the unital algebra generated by A,B. This supports the conjecture that the length of every pair of n×n complex matrices is at most 2n−2, known to be true for n<6.
For two given projections p and q in a C*-algebra, we investigate how to express the Drazin inverses of the product pq and the difference p−q, and give applications. As a special case, we obtain the results of [C. Y. Deng, ‘The Drazin inverses of products and differences of orthogonal projections’, J. Math. Anal. Appl.335 (2007) 64–71], with considerably simpler proofs.
We study the matrix equation C(BXC)†B=X†, where X† denotes the Moore–Penrose inverse. We derive conditions for the consistency of the equation and express all its solutions using singular vectors of B and C. Applications to compliance matrices in molecular dynamics, to mixed reverse-order laws of generalized inverses and to weighted Moore–Penrose inverses are given.