To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There has been a lot of study on the SOR-like methods for solving the augmented system of linear equations since the outstanding work of Golub, Wu and Yuan (BIT 41(2001)71-85) was presented fifteen years ago. Based on the SOR-like methods, we establish a class of accelerated SOR-like methods for large sparse augmented linear systems by making use of optimization technique, which will find the optimal relaxation parameter ω by optimization models. We demonstrate the convergence theory of the new methods under suitable restrictions. The numerical examples show these methods are effective.
For symmetric eigenvalue problems, we constructed a three-term recurrence polynomial filter by means of Chebyshev polynomials. The new filtering technique does not need to solve linear systems and only needs matrix-vector products. It is a memory conserving filtering technique for its three-term recurrence relation. As an application, we use this filtering strategy to the Davidson method and propose the filtered-Davidson method. Through choosing suitable shifts, this method can gain cubic convergence rate locally. Theory and numerical experiments show the efficiency of the new filtering technique.
In this paper, we analyse the convergence rates of several different predictor-corrector iterations for computing the minimal positive solution of the nonsymmetric algebraic Riccati equation arising in transport theory. We have shown theoretically that the new predictor-corrector iteration given in [Numer. Linear Algebra Appl., 21 (2014), pp. 761–780] will converge no faster than the simple predictor-corrector iteration and the nonlinear block Jacobi predictor-corrector iteration. Moreover the last two have the same asymptotic convergence rate with the nonlinear block Gauss-Seidel iteration given in [SIAM J. Sci. Comput., 30 (2008), pp. 804–818]. Preliminary numerical experiments have been reported for the validation of the developed comparison theory.
We propose and investigate a novel solution strategy to efficiently and accurately compute approximate solutions to semilinear optimal control problems, focusing on the optimal control of phase field formulations of geometric evolution laws. The optimal control of geometric evolution laws arises in a number of applications in fields including material science, image processing, tumour growth and cell motility. Despite this, many open problems remain in the analysis and approximation of such problems. In the current work we focus on a phase field formulation of the optimal control problem, hence exploiting the well developed mathematical theory for the optimal control of semilinear parabolic partial differential equations. Approximation of the resulting optimal control problemis computationally challenging, requiring massive amounts of computational time and memory storage. The main focus of this work is to propose, derive, implement and test an efficient solution method for such problems. The solver for the discretised partial differential equations is based upon a geometric multigrid method incorporating advanced techniques to deal with the nonlinearities in the problem and utilising adaptive mesh refinement. An in-house two-grid solution strategy for the forward and adjoint problems, that significantly reduces memory requirements and CPU time, is proposed and investigated computationally. Furthermore, parallelisation as well as an adaptive-step gradient update for the control are employed to further improve efficiency. Along with a detailed description of our proposed solution method together with its implementation we present a number of computational results that demonstrate and evaluate our algorithms with respect to accuracy and efficiency. A highlight of the present work is simulation results on the optimal control of phase field formulations of geometric evolution laws in 3-D which would be computationally infeasible without the solution strategies proposed in the present work.
In this paper we establish operator quasilinearity properties of some functionals associated with Davis–Choi–Jensen’s inequality for positive maps and operator convex or concave functions. Applications for the power function and the logarithm are provided.
We present DASHMM, a general library implementing multipole methods (including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dynamic adaptive runtime techniques provided by the HPX-5 system to parallelize the resulting multipole moment computation. The result is a library that is easy-to-use, extensible, scalable, efficient, and portable. We present both the abstractions defined by DASHMM as well as the specific features of HPX-5 that allow the library to execute scalably and efficiently.
We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.
Assume that $A$ is a finite-dimensional algebra over some field, and assume that $A$ is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module $M$ whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.
This paper proposes improvements to the modified Fletcher–Reeves conjugate gradient method (FR-CGM) for computing $Z$-eigenpairs of symmetric tensors. The FR-CGM does not need to compute the exact gradient and Jacobian. The global convergence of this method is established. We also test other conjugate gradient methods such as the modified Polak–Ribière–Polyak conjugate gradient method (PRP-CGM) and shifted power method (SS-HOPM). Numerical experiments of FR-CGM, PRP-CGM and SS-HOPM show the efficiency of the proposed method for finding $Z$-eigenpairs of symmetric tensors.
We present RECFMM, a program representation and implementation of a recursive scheme for parallelizing the adaptive fast multipole method (FMM) on shared-memory computers. It achieves remarkable high performance while maintaining mathematical clarity and flexibility. The parallelization scheme signifies the recursion feature that is intrinsic to the FMM but was not well exploited. The program modules of RECFMM constitute a map between numerical computation components and advanced architecture mechanisms. The mathematical structure is preserved and exploited, not obscured nor compromised, by parallel rendition of the recursion scheme. Modern software system—CILK in particular, which provides graph-theoretic optimal scheduling in adaptation to the dynamics in parallel execution—is employed. RECFMM supports multiple algorithm variants that mark the major advances with low-frequency interaction kernels, and includes the asymmetrical version where the source particle ensemble is not necessarily the same as the target particle ensemble. We demonstrate parallel performance with Coulomb and screened Coulomb interactions.
The anisotropic perfectly matched layer (APML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the vector field. Inspired by [Z. Chen et al., Inverse Probl. Imag., 7, (2013):663–678] and based on the idea of the shortest distance, we propose a new approach to construct the vector field which still allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. Moreover, by using the reflection argument, we prove the stability of the PML problem in the PML layer and the convergence of the PML method. Numerical experiments are also included.
A lopsided alternating direction iteration (LADI) method and an induced block diagonal preconditioner for solving block two-by-two generalised saddle point problems are presented. The convergence of the LADI method is analysed, and the block diagonal preconditioner can accelerate the convergence rates of Krylov subspace iteration methods such as GMRES. Our new preconditioned method only requires a solver for two linear equation sub-systems with symmetric and positive definite coefficient matrices. Numerical experiments show that the GMRES with the new preconditioner is quite effective.
An efficient high order numerical method is presented to solve the mobile-immobile advection-dispersion model with the Coimbra time variable-order fractional derivative, which is used to simulate solute transport in watershed catchments and rivers. On establishing an efficient recursive algorithm based on the properties of Jacobi polynomials to approximate the Coimbra variable-order fractional derivative operator, we use spectral collocation method with both temporal and spatial discretisation to solve the time variable-order fractional mobile-immobile advection-dispersion model. Numerical examples then illustrate the effectiveness and high order convergence of our approach.
In this paper a determinant identity is established, from which a simple proof of the multivariate Lagrange–Good inversion formula follows directly. Further discussion on a discrete analogue of the Lagrange–Good inversion formula is also presented.
We investigate the central moments of (regular) hexagons and derive accordingly a discrete approximation to definite integrals on hexagons. The seven-point cubature rule makes use of interior and neighbor center nodes, and is of fourth order by construction. The result is expected to be useful in two-dimensional (open-field) applications of integral equations or image processing.
Necessary and sufficient conditions for the existence of an orthogonal $\ast$-basis of symmetry classes of tensors associated to nonabelian groups of order $pq$ are provided by using vanishing sums of roots of unity.
Generalised centrohermitian and skew-centrohermitian matrices arise in a variety of applications in different fields. Based on the vibrating structure equation where M, D, G, K are given matrices with appropriate sizes and x is a column vector, we design a new vibrating structure mode. This mode can be discretised as the left and right inverse eigenvalue problem of a certain structured matrix. When the structured matrix is generalised centrohermitian, we discuss its left and right inverse eigenvalue problem with a submatrix constraint, and then get necessary and sufficient conditions such that the problem is solvable. A general representation of the solutions is presented, and an analytical expression for the solution of the optimal approximation problem in the Frobenius norm is obtained. Finally, the corresponding algorithm to compute the unique optimal approximate solution is presented, and we provide an illustrative numerical example.
The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit Courant–Fischer type min–max principles in 1955 by Duffin and Cauchy type interlacing inequalities in 2010 by Veselić. It can be regarded as the closest analog (among all kinds of quadratic eigenvalue problem) to the standard Hermitian eigenvalue problem (among all kinds of standard eigenvalue problem). In this paper, we conduct a systematic study on the HQEP both theoretically and numerically. On the theoretical front, we generalize Wielandt–Lidskii type min–max principles and, as a special case, Fan type trace min/max principles and establish Weyl type and Wielandt–Lidskii–Mirsky type perturbation results when an HQEP is perturbed to another HQEP. On the numerical front, we justify the natural generalization of the Rayleigh–Ritz procedure with existing principles and our new optimization principles, and, as consequences of these principles, we extend various current optimization approaches—steepest descent/ascent and nonlinear conjugate gradient type methods for the Hermitian eigenvalue problem—to calculate a few extreme eigenvalues (of both positive and negative type). A detailed convergence analysis is given for the steepest descent/ascent methods. The analysis reveals the intrinsic quantities that control convergence rates and consequently yields ways of constructing effective preconditioners. Numerical examples are presented to demonstrate the proposed theory and algorithms.
This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned. Such matrices arise in random matrix theory and require the use of extremely high precision arithmetic. Surprisingly, we find that a group of commonly-used approaches that are designed for high efficiency are actually less efficient than a direct approach for this class of matrices. We then develop a parallel implementation of the algorithm that takes into account the unusually high cost of individual arithmetic operations. Our approach combines message passing and shared memory, achieving near-perfect scalability and high tolerance for network latency. We are thus able to find solutions for much larger matrices than previously possible, with the potential for extending this work to systems with greater levels of parallelism. The contributions of this work are in three areas: determination that a direct algorithm based on the secant method is more effective when extreme fixed-point precision is required than are the algorithms more typically used in parallel floating-point computations; the particular mix of optimizations required for extreme precision large matrix operations on a modern multi-core cluster, and the numerical results themselves.
The Teter, Payne, and Allan “preconditioning” function plays a significant role in planewave DFT calculations. This function is often called the TPA preconditioner. We present a detailed study of this “preconditioning” function. We develop a general formula that can readily generate a class of “preconditioning” functions. These functions have higher order approximation accuracy and fulfill the two essential “preconditioning” purposes as required in planewave DFT calculations. Our general class of functions are expected to have applications in other areas.