We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a prescribed set of lacunary data with equally spaced knot sequence in the unit interval, we show the existence of a family of fractal splines satisfying for v = 0, 1, … ,N and suitable boundary conditions. To this end, the unique quintic spline introduced by A. Meir and A. Sharma [SIAM J. Numer. Anal. 10(3) 1973, pp. 433-442] is generalized by using fractal functions with variable scaling parameters. The presence of scaling parameters that add extra “degrees of freedom”, self-referentiality of the interpolant, and “fractality” of the third derivative of the interpolant are additional features in the fractal version, which may be advantageous in applications. If the lacunary data is generated from a function Φ satisfying certain smoothness condition, then for suitable choices of scaling factors, the corresponding fractal spline satisfies , as the number of partition points increases.
Through appropriate choices of elements in the underlying iterated function system, the methodology of fractal interpolation enables us to associate a family of continuous self-referential functions with a prescribed real-valued continuous function on a real compact interval. This procedure elicits what is referred to as an α-fractal operator on , the space of all real-valued continuous functions defined on a compact interval I. With an eye towards connecting fractal functions with other branches of mathematics, in this paper we continue to investigate the fractal operator in more general spaces such as the space of all bounded functions and the Lebesgue space , and in some standard spaces of smooth functions such as the space of k-times continuously differentiable functions, Hölder spaces and Sobolev spaces . Using properties of the α-fractal operator, the existence of Schauder bases consisting of self-referential functions for these function spaces is established.
As an application of the boundary parametrization developed in our previous papers, we propose a new method to deduce information on the connected components of the interior of tiles. This gives a systematic way to study the topology of a certain class of self-affine tiles. An example due to Bandt and Gelbrich is examined to prove the efficiency of the method.
Let $\{f_{n}\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ and let $\unicode[STIX]{x1D6EC}$ be its attractor. Then, for any $x\in \unicode[STIX]{x1D6EC}$, it corresponds to a sequence of integers $\{a_{n}(x)\}_{n\geq 1}$, called the digit sequence of $x$, in the sense that
In this note, we investigate the size of the points whose digit sequences are strictly increasing and of upper Banach density one, which improves the work of Tong and Wang and Zhang and Cao.
In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.
The theory of influence and sharp threshold is a key tool in probability and probabilistic combinatorics, with numerous applications. One significant aspect of the theory is directed at identifying the level of generality of the product probability space that accommodates the event under study. We derive the influence inequality for a completely general product space, by establishing a relationship to the Lebesgue cube studied by Bourgain, Kahn, Kalai, Katznelson and Linial (BKKKL) in 1992. This resolves one of the assertions of BKKKL. Our conclusion is valid also in the setting of the generalized influences of Keller.
We give a new necessary and sufficient condition for an iterated function system to satisfy the deterministic chaos game. As a consequence, we give a new example of an iterated function system which satisfies the deterministic chaos game.
Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.
Let μλ be the Bernoulli convolution associated with λ ∈ (0, 1). The well-known result of Jorgensen and Pedersen shows that if λ = 1/(2k) for some k ∈ ℕ, then μ1/(2k) is a spectral measure with spectrum Γ(1/(2k)). The recent research on the spectrality of μλ shows that μλ is a spectral measure only if λ = 1/(2k) for some k ∈ ℕ. Moreover, for certain odd integer p, the multiple set pΓ(1/(2k)) is also a spectrum for μ1/(2k). This is surprising because some spectra for the measure μ1/(2k) are thinning. In this paper we mainly characterize the number p that has the above property. By applying the properties of congruences and the order of elements in the finite group, we obtain several conditions on p such that pΓ(1/(2k)) is a spectrum for μ1/(2k).
Using a regular Borel measure μ ⩾ 0 we derive a proper subspace of the commonly used Sobolev space D1(ℝN) when N ⩾ 3. The space resembles the standard Sobolev space H1(Ω) when Ω is a bounded region with a compact Lipschitz boundary ∂Ω. An equivalence characterization and an example are provided that guarantee that is compactly embedded into L1(RN). In addition, as an application we prove an existence result of positive solutions to an elliptic equation in ℝN that involves the Laplace operator with the critical Sobolev nonlinearity, or with a general nonlinear term that has a subcritical and superlinear growth. We also briefly discuss the compact embedding of to Lp(ℝN) when N ⩾ 2 and 2 ⩽ p ⩽ N.
The counting and (upper) mass dimensions of a set A ⊆ $\mathbb{R}^d$ are
$$D(A) = \limsup_{\|C\| \to \infty} \frac{\log | \lfloor A \rfloor \cap C |}{\log \|C\|}, \quad \smash{\overline{D}}\vphantom{D}(A) = \limsup_{\ell \to \infty} \frac{\log | \lfloor A \rfloor \cap [-\ell,\ell)^d |}{\log (2 \ell)},$$
where ⌊A⌋ denotes the set of elements of A rounded down in each coordinate and where the limit supremum in the counting dimension is taken over cubes C ⊆ $\mathbb{R}^d$ with side length ‖C‖ → ∞. We give a characterization of the counting dimension via coverings:
in which the infimum is taken over cubic coverings {Ci} of A ∩ C. Then we prove Marstrand-type theorems for both dimensions. For example, almost all images of A ⊆ $\mathbb{R}^d$ under orthogonal projections with range of dimension k have counting dimension at least min(k, D(A)); if we assume D(A) = D(A), then the mass dimension of A under the typical orthogonal projection is equal to min(k, D(A)). This work extends recent work of Y. Lima and C. G. Moreira.
We generalize to the anisotropic case some classical and recent results on the (n – 1)-Minkowski content of rectifiable sets in ℝn, and on the outer Minkowski content of subsets of ℝn. In particular, a general formula for the anisotropic outer Minkowski content is provided; it applies to a wide class of sets that are stable under finite unions.
We consider a special kind of structure resolvability and irresolvability for measurable spaces and discuss analogues of the criteria for topological resolvability and irresolvability.
We present a construction of a measure-zero Kakeya-type set in a finite-dimensional space $K^{n}$ over a local field with finite residue field. The construction is an adaptation of the ideas appearing in works by Sawyer [Mathematika34(1) (1987), 69–76] and Wisewell [Mathematika51(1–2) (2004), 155–162]. The existence of measure-zero Kakeya-type sets over discrete valuation rings is also discussed, giving an alternative construction to the one over $\mathbb{F}_{\ell }\unicode[STIX]{x27E6}t\unicode[STIX]{x27E7}$ presented by Dummit and Hablicsek [Mathematika59(2) (2013), 257–266].
We establish that the intrinsic distance dE associated with an indecomposable plane set E of finite perimeter is infinitesimally Euclidean; namely,
in E. By this result, we prove through a standard argument that a conservative vector field in a plane set of finite perimeter has a potential. We also provide some applications to complex analysis. Moreover, we present a collection of results that would seem to suggest the possibility of developing a De Rham cohomology theory for integral currents.
We analyze copulas with a nontrivial singular component by using their Markov kernel representation. In particular, we provide existence results for copulas with a prescribed singular component. The constructions not only help to deal with problems related to multivariate stochastic systems of lifetimes when joint defaults can occur with a nonzero probability, but even provide a copula maximizing the probability of joint default.
We investigate the interplay between the local and asymptotic geometry of a set $A\subseteq \mathbb{R}^{n}$ and the geometry of model sets ${\mathcal{S}}\subset {\mathcal{P}}(\mathbb{R}^{n})$, which approximate $A$ locally uniformly on small scales. The framework for local set approximation developed in this paper unifies and extends ideas of Jones, Mattila and Vuorinen, Reifenberg, and Preiss. We indicate several applications of this framework to variational problems that arise in geometric measure theory and partial differential equations. For instance, we show that the singular part of the support of an $(n-1)$-dimensional asymptotically optimally doubling measure in $\mathbb{R}^{n}$ ($n\geqslant 4$) has upper Minkowski dimension at most $n-4$.
We demonstrate that many properties of topological spaces connected with the notion of resolvability are preserved by the relation of similarity between topologies. Moreover, many of them can be characterised by the properties of the algebra of sets with nowhere dense boundary and the ideal of nowhere dense sets. We use these results to investigate whether a given pair of an algebra and an ideal is topological.
This article explores the properties of fractal interpolation functions with variable scaling parameters, in the context of smooth fractal functions. The first part extends the Barnsley–Harrington theorem for differentiability of fractal functions and the fractal analogue of Hermite interpolation to the present setting. The general result is applied on a special class of iterated function systems in order to develop differentiability of the so-called $\boldsymbol{{\it\alpha}}$-fractal functions. This leads to a bounded linear map on the space ${\mathcal{C}}^{k}(I)$ which is exploited to prove the existence of a Schauder basis for ${\mathcal{C}}^{k}(I)$ consisting of smooth fractal functions.