We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study the Assouad dimension of graphs of certain Lévy processes and functions defined by stochastic integrals. We do this by introducing a convenient condition which guarantees a graph to have full Assouad dimension and then show that graphs of our studied processes satisfy this condition.
For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.
In the realm of Delone sets in locally compact, second countable Hausdorff groups, we develop a dynamical systems approach in order to study the continuity behavior of measured quantities arising from point sets. A special focus is both on the autocorrelation, as well as on the density of states for random bounded operators. It is shown that for uniquely ergodic limit systems, the latter measures behave continuously with respect to the Chabauty–Fell convergence of hulls. In the special situation of Euclidean spaces, our results complement recent developments in describing spectra as topological limits: we show that the measured quantities under consideration can be approximated via periodic analogs.
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $N\rightarrow \infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e., for non-integrable Riesz kernels of the form $|x-y|^{-s}$ with $s>d$. As a consequence, we immediately get (thanks to the poppy-seed bagel theorem) lower estimates for the large $N$ limits of minimal hypersingular Riesz energy on compact $d$-rectifiable sets. Furthermore, for the Gaussian potential $\exp (-\unicode[STIX]{x1D6FC}|x-y|^{2})$ on $\mathbb{R}^{p}$, we obtain lower bounds for the energy of infinite configurations having a prescribed density.
We consider a meromorphic family of endomorphisms of degree at least 2 of a complex projective space that is parameterized by the unit disk. We prove that the measure of maximal entropy of these endomorphisms converges to the equilibrium measure of the associated non-Archimedean dynamical system when the system degenerates. The convergence holds in the hybrid space constructed by Berkovich and further studied by Boucksom and Jonsson. We also infer from our analysis an estimate for the blow-up of the Lyapunov exponent near a pole in one-dimensional families of endomorphisms.
For the class of self-similar measures in $\mathbb{R}^{d}$ with overlaps that are essentially of finite type, we set up a framework for deriving a closed formula for the $L^{q}$-spectrum of the measure for $q\geq 0$. This framework allows us to include iterated function systems that have different contraction ratios and those in higher dimension. For self-similar measures with overlaps, closed formulas for the $L^{q}$-spectrum have only been obtained earlier for measures satisfying Strichartz’s second-order identities. We illustrate how to use our results to prove the differentiability of the $L^{q}$-spectrum, obtain the multifractal dimension spectrum, and compute the Hausdorff dimension of the measure.
It is known that the space of boundedly finite integer-valued measures on a complete separable metric space becomes a complete separable metric space when endowed with the weak-hash metric. It is also known that convergence under this topology can be characterised in a way that is similar to the weak convergence of totally finite measures. However, the original proofs of these two fundamental results assume that a certain term is monotonic, which is not the case as we show by a counterexample. We clarify these original proofs by addressing the parts that rely on this assumption and finding alternative arguments.
Bilinear fractal interpolation surfaces were introduced by Ruan and Xu in 2015. In this paper, we present the formula for their box dimension under certain constraint conditions.
Let $\unicode[STIX]{x1D707}$ be the projection on $[0,1]$ of a Gibbs measure on $\unicode[STIX]{x1D6F4}=\{0,1\}^{\mathbb{N}}$ (or more generally a Gibbs capacity) associated with a Hölder potential. The thermodynamic and multifractal properties of $\unicode[STIX]{x1D707}$ are well known to be linked via the multifractal formalism. We study the impact of a random sampling procedure on this structure. More precisely, let $\{{I_{w}\}}_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ stand for the collection of dyadic subintervals of $[0,1]$ naturally indexed by the finite dyadic words. Fix $\unicode[STIX]{x1D702}\in (0,1)$, and a sequence $(p_{w})_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ of independent Bernoulli variables of parameters $2^{-|w|(1-\unicode[STIX]{x1D702})}$. We consider the (very sparse) remaining values $\widetilde{\unicode[STIX]{x1D707}}=\{\unicode[STIX]{x1D707}(I_{w}):w\in \unicode[STIX]{x1D6F4}^{\ast },p_{w}=1\}$. We study the geometric and statistical information associated with $\widetilde{\unicode[STIX]{x1D707}}$, and the relation between $\widetilde{\unicode[STIX]{x1D707}}$ and $\unicode[STIX]{x1D707}$. To do so, we construct a random capacity $\mathsf{M}_{\unicode[STIX]{x1D707}}$ from $\widetilde{\unicode[STIX]{x1D707}}$. This new object fulfills the multifractal formalism, and its free energy is closely related to that of $\unicode[STIX]{x1D707}$. Moreover, the free energy of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ generically exhibits one first order and one second order phase transition, while that of $\unicode[STIX]{x1D707}$ is analytic. The geometry of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ is deeply related to the combination of approximation by dyadic numbers with geometric properties of Gibbs measures. The possibility to reconstruct $\unicode[STIX]{x1D707}$ from $\widetilde{\unicode[STIX]{x1D707}}$ by using the almost multiplicativity of $\unicode[STIX]{x1D707}$ and concatenation of words is discussed as well.
Given a positive, decreasing sequence a, whose sum is L, we consider all the closed subsets of [0, L] such that the lengths of their complementary open intervals are in one-to-one correspondence with the sequence a. The aim of this paper is to investigate the possible values that Assouad-type dimensions can attain for this class of sets. In many cases, the set of attainable values is a closed interval whose endpoints we determine.
In this paper we establish a general form of the mass transference principle for systems of linear forms conjectured in 2009. We also present a number of applications of this result to problems in Diophantine approximation. These include a general transference of Lebesgue measure Khintchine–Groshev type theorems to Hausdorff measure statements. The statements we obtain are applicable in both the homogeneous and inhomogeneous settings as well as allowing transference under any additional constraints on approximating integer points. In particular, we establish Hausdorff measure counterparts of some Khintchine–Groshev type theorems with primitivity constraints recently proved by Dani, Laurent and Nogueira.
We explore the problem of finding the Hausdorff dimension of the set of points that recur to shrinking targets on a self-affine fractal. To be exact, we study the dimension of a certain related symbolic recurrence set. In many cases, this set is equivalent to the recurring set on the fractal.
We define fractal interpolation on unbounded domains for a certain class of topological spaces and construct local fractal functions. In addition, we derive some properties of these local fractal functions, consider their tensor products, and give conditions for local fractal functions on unbounded domains to be elements of Bochner–Lebesgue spaces.
Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$.
In this paper we provide a unified approach, based on methods of descriptive set theory, for proving some classical selection theorems. Among them is the zero-dimensional Michael selection theorem, the Kuratowski–Ryll-Nardzewski selection theorem, as well as a known selection theorem for hyperspaces.
The purpose of this paper twofold. Firstly, we establish $\unicode[STIX]{x1D6F1}_{\unicode[STIX]{x1D6FE}}^{0}$-completeness and $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FE}}^{0}$-completeness of several different classes of multifractal decomposition sets of arbitrary Borel measures (satisfying a mild non-degeneracy condition and two mild “smoothness” conditions). Secondly, we apply these results to study the $\unicode[STIX]{x1D6F1}_{\unicode[STIX]{x1D6FE}}^{0}$-completeness and $\unicode[STIX]{x1D6F4}_{\unicode[STIX]{x1D6FE}}^{0}$-completeness of several multifractal decomposition sets of self-similar measures (satisfying a mild separation condition). For example, a corollary of our results shows if $\unicode[STIX]{x1D707}$ is a self-similar measure satisfying the strong separation condition and $\unicode[STIX]{x1D707}$ is not equal to the normalized Hausdorff measure on its support, then the classical multifractal decomposition sets of $\unicode[STIX]{x1D707}$ defined by
In the paper, we provide an effective criterion for the Lipschitz equivalence of two-branch Cantor sets and three-branch Cantor sets by studying the irreducibility of polynomials. We also find that any two Cantor sets are Lipschitz equivalent if and only if their contraction vectors are equivalent provided one of the contraction vectors is homogeneous.
Based on the abstract version of the Smital property, we introduce an operator $DS$. We use it to characterise the class of semitopological abelian groups, for which addition is a quasicontinuous operation.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
For every $q\in (0,1)$, we obtain the Herglotz representation theorem and discuss the Bieberbach problem for the class of $q$-convex functions of order $\unicode[STIX]{x1D6FC}$ with $0\leq \unicode[STIX]{x1D6FC}<1$. In addition, we consider the Fekete–Szegö problem and the Hankel determinant problem for the class of $q$-starlike functions, leading to two conjectures for the class of $q$-starlike functions of order $\unicode[STIX]{x1D6FC}$ with $0\leq \unicode[STIX]{x1D6FC}<1$.