To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study consequences of the results of Kang et al. [Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349–426] on a monoidal categorification of the unipotent quantum coordinate ring $A_{q}(\mathfrak{n}(w))$ together with the Laurent phenomenon of cluster algebras. We show that if a simple module $S$ in the category ${\mathcal{C}}_{w}$ strongly commutes with all the cluster variables in a cluster $[\mathscr{C}]$, then $[S]$ is a cluster monomial in $[\mathscr{C}]$. If $S$ strongly commutes with cluster variables except for exactly one cluster variable $[M_{k}]$, then $[S]$ is either a cluster monomial in $[\mathscr{C}]$ or a cluster monomial in $\unicode[STIX]{x1D707}_{k}([\mathscr{C}])$. We give a new proof of the fact that the upper global basis is a common triangular basis (in the sense of Qin [Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. 166 (2017), 2337–2442]) of the localization $\widetilde{A}_{q}(\mathfrak{n}(w))$ of $A_{q}(\mathfrak{n}(w))$ at the frozen variables. A characterization on the commutativity of a simple module $S$ with cluster variables in a cluster $[\mathscr{C}]$ is given in terms of the denominator vector of $[S]$ with respect to the cluster $[\mathscr{C}]$.
We construct a cycle in higher Hochschild homology associated to the two-dimensional torus which represents 2-holonomy of a nonabelian gerbe in the same way as the ordinary holonomy of a principal G-bundle gives rise to a cycle in ordinary Hochschild homology. This is done using the connection 1-form of Baez–Schreiber. A crucial ingredient in our work is the possibility to arrange that in the structure crossed module $\unicode[STIX]{x1D707}:\mathfrak{h}\rightarrow \mathfrak{g}$ of the principal 2-bundle, the Lie algebra $\mathfrak{h}$ is abelian, up to equivalence of crossed modules.
Let 𝔟 be the Borel subalgebra of the Lie algebra 𝔰𝔩2 and V2 be the simple two-dimensional 𝔰𝔩2-module. For the universal enveloping algebra $\[{\cal A}: = U(\gb \ltimes {V_2})\]$ of the semi-direct product 𝔟⋉V2 of Lie algebras, the prime, primitive and maximal spectra are classified. Please approve edit to the sentence “The sets of completely prime…”.The sets of completely prime ideals of $\[{\cal A}\]$ are described. The simple unfaithful $\[{\cal A}\]$-modules are classified and an explicit description of all prime factor algebras of $\[{\cal A}\]$ is given. The following classes of simple U(𝔟⋉V2)-modules are classified: the Whittaker modules, the 𝕂[X]-torsion modules and the 𝕂[E]-torsion modules.
Let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}(\Bbbk )$, where $\Bbbk$ is an algebraically closed field of characteristic $p>0$, and $N\in \mathbb{Z}_{{\geqslant}1}$. Let $\unicode[STIX]{x1D712}\in \mathfrak{g}^{\ast }$ and denote by $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$ the corresponding reduced enveloping algebra. The Kac–Weisfeiler conjecture, which was proved by Premet, asserts that any finite-dimensional $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-module has dimension divisible by $p^{d_{\unicode[STIX]{x1D712}}}$, where $d_{\unicode[STIX]{x1D712}}$ is half the dimension of the coadjoint orbit of $\unicode[STIX]{x1D712}$. Our main theorem gives a classification of $U_{\unicode[STIX]{x1D712}}(\mathfrak{g})$-modules of dimension $p^{d_{\unicode[STIX]{x1D712}}}$. As a consequence, we deduce that they are all parabolically induced from a one-dimensional module for $U_{0}(\mathfrak{h})$ for a certain Levi subalgebra $\mathfrak{h}$ of $\mathfrak{g}$; we view this as a modular analogue of Mœglin’s theorem on completely primitive ideals in $U(\mathfrak{g}\mathfrak{l}_{N}(\mathbb{C}))$. To obtain these results, we reduce to the case where $\unicode[STIX]{x1D712}$ is nilpotent, and then classify the one-dimensional modules for the corresponding restricted $W$-algebra.
The purpose of this paper is to define an α-type cohomology, which we call α-type Chevalley–Eilenberg cohomology, for Hom-Lie algebras. We relate it to the known Chevalley–Eilenberg cohomology and provide explicit computations for some examples. Moreover, using this cohomology, we study formal deformations of Hom-Lie algebras, where the bracket as well as the structure map α are deformed. Furthermore, we provide a generalization of the grand crochet and study, in a particular case, the α-type cohomology for Hom-Lie bialgebras.
Let F be a field of characteristic different of 2 and let M1|1(F)(+) denote the Jordan superalgebra of 2 × 2 matrices over the field F. The aim of this paper is to classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra M1|1(F)(+).
The category of Cohen–Macaulay modules of an algebra $B_{k,n}$ is used in Jensen et al. (A categorification of Grassmannian cluster algebras, Proc. Lond. Math. Soc. (3) 113(2) (2016), 185–212) to give an additive categorification of the cluster algebra structure on the homogeneous coordinate ring of the Grassmannian of $k$-planes in $n$-space. In this paper, we find canonical Auslander–Reiten sequences and study the Auslander–Reiten translation periodicity for this category. Furthermore, we give an explicit construction of Cohen–Macaulay modules of arbitrary rank. We then use our results to establish a correspondence between rigid indecomposable modules of rank 2 and real roots of degree 2 for the associated Kac–Moody algebra in the tame cases.
We give a new and useful approach to study the representations of symmetric Leibniz algebras. Using this approach, we obtain some results on the representations of these algebras.
The exceptional simple Lie algebras of types E7 and E8 are endowed with optimal $\mathsf{SL}_2^n$-structures, and are thus described in terms of the corresponding coordinate algebras. These are nonassociative algebras which much resemble the so-called code algebras.
In this note we consider parabolic subroot systems of a complex simple Lie Algebra. We describe root theoretic data of the subroot systems in terms of that of the root system and we give a selection of applications of our results to the study of generalized flag manifolds.
We introduce the oriented Brauer–Clifford and degenerate affine oriented Brauer–Clifford supercategories. These are diagrammatically defined monoidal supercategories that provide combinatorial models for certain natural monoidal supercategories of supermodules and endosuperfunctors, respectively, for the Lie superalgebras of type Q. Our main results are basis theorems for these diagram supercategories. We also discuss connections and applications to the representation theory of the Lie superalgebra of type Q.
We prove that if $\mathfrak{s}$ is a solvable Lie algebra of matrices over a field of characteristic 0 and $A\in \mathfrak{s}$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of $A$ belong to $\mathfrak{s}$ if and only if there exist $S,N\in \mathfrak{s}$, $S$ is semisimple, $N$ is nilpotent (not necessarily $[S,N]=0$) such that $A=S+N$.
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated with the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated with the Weyl chambers of type Cn and Dn, completing the computation for all classical types.
We compare two cohomological Hall algebras (CoHA). The first one is the preprojective CoHA introduced in [19] associated with each quiver Q, and each algebraic oriented cohomology theory A. It is defined as the A-homology of the moduli of representations of the preprojective algebra of Q, generalizing the K-theoretic Hall algebra of commuting varieties of Schiffmann-Vasserot [15]. The other one is the critical CoHA defined by Kontsevich-Soibelman associated with each quiver with potentials. It is defined using the equivariant cohomology with compact support with coefficients in the sheaf of vanishing cycles. In the present paper, we show that the critical CoHA, for the quiver with potential of Ginzburg, is isomorphic to the preprojective CoHA as algebras. As applications, we obtain an algebra homomorphism from the positive part of the Yangian to the critical CoHA.
This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).
We analyse infinitesimal deformations of pairs $(X,{\mathcal{F}})$ with ${\mathcal{F}}$ a coherent sheaf on a smooth projective variety $X$ over an algebraically closed field of characteristic 0. We describe a differential graded Lie algebra controlling the deformation problem, and we prove an analog of a Mukai–Artamkin theorem about the trace map.
In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.
Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.
Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.
We explicitly describe the isomorphism between two combinatorial realizations of Kashiwara’s infinity crystal in types B and C. The first realization is in terms of marginally large tableaux and the other is in terms of Kostant partitions coming from PBW bases. We also discuss a stack notation for Kostant partitions which simplifies that realization.
For a multiplier Hopf algebra pairing 〈A,B〉, we construct a class of group-cograded multiplier Hopf algebras D(A,B), generalizing the classical construction of finite dimensional Hopf algebras introduced by Panaite and Staic Mihai [Isr. J. Math. 158 (2007), 349–365]. Furthermore, if the multiplier Hopf algebra pairing admits a canonical multiplier in M(B⊗A) we show the existence of quasitriangular structure on D(A,B). As an application, some special cases and examples are provided.